These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 9580598)

  • 41. Effect of NG-nitro-L-arginine on age-related changes of glutamate receptor systems and immunophilin in rats.
    Araki T; Oshima Y; Kato H; Shuto K; Itoyama Y
    Methods Find Exp Clin Pharmacol; 1997; 19(6):373-81. PubMed ID: 9385586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-classical glutamate receptors, blocked by both NMDA and non-NMDA antagonists, stimulate nitric oxide production in neurons.
    Marin P; Quignard JF; Lafon-Cazal M; Bockaert J
    Neuropharmacology; 1993 Jan; 32(1):29-36. PubMed ID: 8094233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adenosine modulates N-methyl-D-aspartate-stimulated hippocampal nitric oxide production in vivo.
    Bhardwaj A; Northington FJ; Koehler RC; Stiefel T; Hanley DF; Traystman RJ
    Stroke; 1995 Sep; 26(9):1627-33. PubMed ID: 7544925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel action of nitric oxide as mediator of N-methyl-D-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum.
    Smith SS; Li J
    Mol Pharmacol; 1993 Jan; 43(1):1-5. PubMed ID: 8380882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Possible involvement of nitric oxide in NMDA-induced glutamate release in the rat striatum: an in vivo microdialysis study.
    Bogdanov MB; Wurtman RJ
    Neurosci Lett; 1997 Jan; 221(2-3):197-201. PubMed ID: 9121698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of central glutamate receptors, nitric oxide and soluble guanylyl cyclase in the inhibition by endotoxin of rat gastric acid secretion.
    García-Zaragozá E; Barrachina MD; Moreno L; Esplugues JV
    Br J Pharmacol; 2000 Jul; 130(6):1283-8. PubMed ID: 10903967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of NMDA-induced increases in levels of endogenous adenosine by adenosine deaminase and adenosine transport inhibition in rat striatum.
    Delaney SM; Geiger JD
    Brain Res; 1995 Dec; 702(1-2):72-6. PubMed ID: 8846098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of ionotropic glutamatergic receptors and nitric oxide in the effects of flutriafol, a triazole fungicide, on the in vivo striatal dopamine release.
    Faro LR; Alfonso M; Maués LA; Durán R
    J Toxicol Sci; 2012; 37(6):1135-42. PubMed ID: 23208429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of NO synthase inhibition on NMDA- and ischaemia-induced hippocampal lesions.
    Moncada C; Lekieffre D; Arvin B; Meldrum B
    Neuroreport; 1992 Jun; 3(6):530-2. PubMed ID: 1382661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endogenous nitric oxide facilitates striatal dopamine and glutamate efflux in vivo: role of ionotropic glutamate receptor-dependent mechanisms.
    West AR; Galloway MP
    Neuropharmacology; 1997; 36(11-12):1571-81. PubMed ID: 9517428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of N-methyl-D-aspartate, kainate or veratridine on extracellular concentrations of free D-serine and L-glutamate in rat striatum: an in vivo microdialysis study.
    Hashimoto A; Kanda J; Oka T
    Brain Res Bull; 2000 Oct; 53(3):347-51. PubMed ID: 11113591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide regulates excitatory amino acid release in a biphasic manner in freely moving rats.
    Segieth J; Getting SJ; Biggs CS; Whitton PS
    Neurosci Lett; 1995 Nov; 200(2):101-4. PubMed ID: 8614554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of nitric oxide availability on responses of spinal wide dynamic range neurons to excitatory amino acids.
    Budai D; Wilcox GL; Larson AA
    Eur J Pharmacol; 1995 May; 278(1):39-47. PubMed ID: 7545123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disruption of redox homeostasis and histopathological alterations caused by in vivo intrastriatal administration of D-2-hydroxyglutaric acid to young rats.
    da Rosa MS; Seminotti B; Amaral AU; Parmeggiani B; de Oliveira FH; Leipnitz G; Wajner M
    Neuroscience; 2014 Sep; 277():281-93. PubMed ID: 25043325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of endogenous nitric oxide and sulfhydryl compounds in ebrotidine-induced gastroprotection.
    Palop D; Conejo L; Sacristán A; Ortiz JA
    Arzneimittelforschung; 1997 Apr; 47(4A):468-71. PubMed ID: 9205745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide regulates NMDA-induced dopamine release in rat striatum.
    Shibata M; Araki N; Ohta K; Hamada J; Shimazu K; Fukuuchi Y
    Neuroreport; 1996 Jan; 7(2):605-8. PubMed ID: 8730840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two pathways of nitric oxide production through glutamate receptors in the rat cerebellum in vivo.
    Yamada K; Nabeshima T
    Neurosci Res; 1997 Jun; 28(2):93-102. PubMed ID: 9220466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intrauterine hypoxia-ischemia increases N-methyl-D-aspartate-induced cGMP formation and glutamate accumulation in cultured rat cerebellar granule cells.
    Cai Z; Sigrest T; Hersey K; Rhodes PG
    Pediatr Res; 1995 Jul; 38(1):107-12. PubMed ID: 7478786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide: an endogenous anticonvulsant substance.
    Buisson A; Lakhmeche N; Verrecchia C; Plotkine M; Boulu RG
    Neuroreport; 1993 Apr; 4(4):444-6. PubMed ID: 7684618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of nitric oxide and N-methyl-D-aspartate in acute hypoxic altitude convulsion in mice.
    Chen CH; Chen AC; Liu HJ
    Aviat Space Environ Med; 1997 Apr; 68(4):296-9. PubMed ID: 9096824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.