BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9580643)

  • 1. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens.
    Zhang M; Gosnell BA; Kelley AE
    J Pharmacol Exp Ther; 1998 May; 285(2):908-14. PubMed ID: 9580643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum.
    Will MJ; Pratt WE; Kelley AE
    Physiol Behav; 2006 Sep; 89(2):226-34. PubMed ID: 16854442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens.
    Zhang M; Kelley AE
    Psychopharmacology (Berl); 2002 Feb; 159(4):415-23. PubMed ID: 11823894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.
    Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N
    Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bi-directional mu-opioid-opioid connection between the nucleus of the accumbens shell and the central nucleus of the amygdala in the rat.
    Kim EM; Quinn JG; Levine AS; O'Hare E
    Brain Res; 2004 Dec; 1029(1):135-9. PubMed ID: 15533326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats.
    Bodnar RJ; Lamonte N; Israel Y; Kandov Y; Ackerman TF; Khaimova E
    Peptides; 2005 Apr; 26(4):621-9. PubMed ID: 15752577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration.
    Parker KE; Johns HW; Floros TG; Will MJ
    Behav Brain Res; 2014 Mar; 260():131-8. PubMed ID: 24257074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical evidence of increased dopamine transmission in prefrontal cortex and nucleus accumbens elicited by ventral tegmental mu-opioid receptor activation in freely behaving rats.
    Noel MB; Gratton A
    Synapse; 1995 Oct; 21(2):110-22. PubMed ID: 8584972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens.
    MacDonald AF; Billington CJ; Levine AS
    Brain Res; 2004 Aug; 1018(1):78-85. PubMed ID: 15262208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes.
    Bakshi VP; Kelley AE
    J Pharmacol Exp Ther; 1993 Jun; 265(3):1253-60. PubMed ID: 8389860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food-associated cues.
    Guy EG; Choi E; Pratt WE
    Behav Brain Res; 2011 Jun; 219(2):265-72. PubMed ID: 21262268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network.
    Will MJ; Franzblau EB; Kelley AE
    J Neurosci; 2003 Apr; 23(7):2882-8. PubMed ID: 12684475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-amygdalar injection of DAMGO: effects on c-Fos levels in brain sites associated with feeding behavior.
    Levine AS; Olszewski PK; Mullett MA; Pomonis JD; Grace MK; Kotz CM; Billington CJ
    Brain Res; 2004 Jul; 1015(1-2):9-14. PubMed ID: 15223361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats.
    Kelley AE; Bless EP; Swanson CJ
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1499-507. PubMed ID: 8819538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mu- and delta-opioid receptors in the nucleus accumbens in turning behaviour of rats.
    Matsuzaki S; Ikeda H; Akiyama G; Sato M; Moribe S; Suzuki T; Nagase H; Cools AR; Koshikawa N
    Neuropharmacology; 2004 Jun; 46(8):1089-96. PubMed ID: 15111015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system.
    Tao R; Auerbach SB
    J Pharmacol Exp Ther; 2002 Nov; 303(2):549-56. PubMed ID: 12388635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of nucleus accumbens adenosine-opioid interaction in mediating palatable food intake.
    Pritchett CE; Pardee AL; McGuirk SR; Will MJ
    Brain Res; 2010 Jan; 1306():85-92. PubMed ID: 19822132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense mapping of the MOR-1 opioid receptor clone: modulation of hyperphagia induced by DAMGO.
    Leventhal L; Stevens LB; Rossi GC; Pasternak GW; Bodnar RJ
    J Pharmacol Exp Ther; 1997 Sep; 282(3):1402-7. PubMed ID: 9316853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion.
    Pratt WE; Blackstone K; Connolly ME; Skelly MJ
    Behav Neurosci; 2009 Oct; 123(5):1046-57. PubMed ID: 19824770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord.
    He L; Lee NM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1181-6. PubMed ID: 9618421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.