These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 9580957)
21. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. Ueno K; Liu YK J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107 [TBL] [Abstract][Full Text] [Related]
22. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). Goto K; Tajima N; Chosa E; Totoribe K; Kubo S; Kuroki H; Arai T J Orthop Sci; 2003; 8(4):577-84. PubMed ID: 12898313 [TBL] [Abstract][Full Text] [Related]
23. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826 [TBL] [Abstract][Full Text] [Related]
24. Total disc replacement positioning affects facet contact forces and vertebral body strains. Rundell SA; Auerbach JD; Balderston RA; Kurtz SM Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591 [TBL] [Abstract][Full Text] [Related]
25. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394 [TBL] [Abstract][Full Text] [Related]
26. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120 [TBL] [Abstract][Full Text] [Related]
27. Strain distribution in the lumbar vertebrae under different loading configurations. Cristofolini L; Brandolini N; Danesi V; Juszczyk MM; Erani P; Viceconti M Spine J; 2013 Oct; 13(10):1281-92. PubMed ID: 23958297 [TBL] [Abstract][Full Text] [Related]
28. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength. Lu Y; Maquer G; Museyko O; PĆ¼schel K; Engelke K; Zysset P; Morlock M; Huber G J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795 [TBL] [Abstract][Full Text] [Related]
29. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Liebschner MA; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2001 Jul; 26(14):1547-54. PubMed ID: 11462084 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998 [TBL] [Abstract][Full Text] [Related]
31. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads. Tsouknidas A; Michailidis N; Savvakis S; Anagnostidis K; Bouzakis KD; Kapetanos G J Appl Biomech; 2012 Aug; 28(4):448-56. PubMed ID: 22086145 [TBL] [Abstract][Full Text] [Related]
32. Finite element model of the Jefferson fracture: comparison with a cadaver model. Bozkus H; Karakas A; Hanci M; Uzan M; Bozdag E; Sarioglu AC Eur Spine J; 2001 Jun; 10(3):257-63. PubMed ID: 11469739 [TBL] [Abstract][Full Text] [Related]
33. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis. Zhao WT; Qin DP; Zhang XG; Wang ZP; Tong Z J Orthop Surg Res; 2018 Feb; 13(1):32. PubMed ID: 29422073 [TBL] [Abstract][Full Text] [Related]
34. Load sharing between the shell and centrum in the lumbar vertebral body. Silva MJ; Keaveny TM; Hayes WC Spine (Phila Pa 1976); 1997 Jan; 22(2):140-50. PubMed ID: 9122793 [TBL] [Abstract][Full Text] [Related]
35. The effect of bone quality on pedicle screw loading in axial instability. A synthetic model. McLain RF; McKinley TO; Yerby SA; Smith TS; Sarigul-Klijn N Spine (Phila Pa 1976); 1997 Jul; 22(13):1454-60. PubMed ID: 9231963 [TBL] [Abstract][Full Text] [Related]
36. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Ambati DV; Wright EK; Lehman RA; Kang DG; Wagner SC; Dmitriev AE Spine J; 2015 Aug; 15(8):1812-22. PubMed ID: 24983669 [TBL] [Abstract][Full Text] [Related]
37. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986 [TBL] [Abstract][Full Text] [Related]
38. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. Crawford RP; Rosenberg WS; Keaveny TM J Biomech Eng; 2003 Aug; 125(4):434-8. PubMed ID: 12968567 [TBL] [Abstract][Full Text] [Related]
39. Load sharing within a human lumbar vertebral body using the finite element method. Cao KD; Grimm MJ; Yang KH Spine (Phila Pa 1976); 2001 Jun; 26(12):E253-60. PubMed ID: 11426165 [TBL] [Abstract][Full Text] [Related]
40. A finite element investigation of upper cervical instrumentation. Puttlitz CM; Goel VK; Traynelis VC; Clark CR Spine (Phila Pa 1976); 2001 Nov; 26(22):2449-55. PubMed ID: 11707709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]