These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 9581059)
1. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia. Stauffer PR; Rossetto F; Leoncini M; Gentilli GB IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059 [TBL] [Abstract][Full Text] [Related]
2. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz. Rossetto F; Stauffer PR Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730 [TBL] [Abstract][Full Text] [Related]
3. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas. Rossetto F; Stauffer PR; Manfrini V; Diederich CJ; Biffi Gentili G Int J Hyperthermia; 1998; 14(6):553-71. PubMed ID: 9886662 [TBL] [Abstract][Full Text] [Related]
4. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease. Jacobsen S; Stauffer PR; Neuman DG IEEE Trans Biomed Eng; 2000 Nov; 47(11):1500-9. PubMed ID: 11077744 [TBL] [Abstract][Full Text] [Related]
5. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Rossetto F; Diederich CJ; Stauffer PR Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697 [TBL] [Abstract][Full Text] [Related]
6. Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. Specific absorption rate. Rossetto F; Stauffer PR IEEE Trans Biomed Eng; 1999 Nov; 46(11):1310-9. PubMed ID: 10582416 [TBL] [Abstract][Full Text] [Related]
7. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water. Underwood HR; Peterson AF; Magin RL IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617 [TBL] [Abstract][Full Text] [Related]
8. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. Gelvich EA; Mazokhin VN IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873 [TBL] [Abstract][Full Text] [Related]
9. Microstrip-antenna design for hyperthermia treatment of superficial tumors. Montecchia F IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439 [TBL] [Abstract][Full Text] [Related]
10. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. Neuman DG; Stauffer PR; Jacobsen S; Rossetto F Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636 [TBL] [Abstract][Full Text] [Related]
11. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement. Clibbon KL; McCowen A; Hand JW IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of microstrip muscle-loaded single-arm Archimedean spiral antennas as investigated by FDTD numerical computations. Jacobsen S; Rolfsnes HO; Stauffer PR IEEE Trans Biomed Eng; 2005 Feb; 52(2):321-30. PubMed ID: 15709670 [TBL] [Abstract][Full Text] [Related]
13. Optimization of a dual concentric conductor antenna for superficial hyperthermia applications. Maccarini PF; Rolfsnes HO; Neuman D; Stauffer P Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2518-21. PubMed ID: 17270785 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method. Kumaradas JC; Sherar MD Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497 [TBL] [Abstract][Full Text] [Related]
16. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Chakaravarthi G; Arunachalam K Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603 [TBL] [Abstract][Full Text] [Related]
17. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior. Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983 [TBL] [Abstract][Full Text] [Related]
18. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data. Ryan TP; Backus VL; Coughlin CT Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. Shaw JA; Durney CH; Christensen DA IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Mechling JA; Strohbehn JW; Ryan TP Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]