These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9581401)

  • 1. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies.
    Cooper LF; Masuda T; Yliheikkilä PK; Felton DA
    Int J Oral Maxillofac Implants; 1998; 13(2):163-74. PubMed ID: 9581401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro modeling of the bone/implant interface.
    Davies JE
    Anat Rec; 1996 Jun; 245(2):426-45. PubMed ID: 8769677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New experimental model to study the bone interface of endosseous implants: an in vitro three-dimensional model of cell culture.
    Li D; Liu B
    Implant Dent; 1999; 8(2):120-5. PubMed ID: 10635153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies.
    Masuda T; Yliheikkilä PK; Felton DA; Cooper LF
    Int J Oral Maxillofac Implants; 1998; 13(1):17-29. PubMed ID: 9509776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo performance of a novel surface treatment to enhance osseointegration of endosseous implants.
    Chiesa R; Giavaresi G; Fini M; Sandrini E; Giordano C; Bianchi A; Giardino R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Jun; 103(6):745-56. PubMed ID: 17197210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for surface topography in creating and maintaining bone at titanium endosseous implants.
    Cooper LF
    J Prosthet Dent; 2000 Nov; 84(5):522-34. PubMed ID: 11105008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface.
    Holden CM; Bernard GW
    J Oral Implantol; 1990; 16(2):86-95. PubMed ID: 1963643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing dental implant surface technology--from micron- to nanotopography.
    Mendonça G; Mendonça DB; Aragão FJ; Cooper LF
    Biomaterials; 2008 Oct; 29(28):3822-35. PubMed ID: 18617258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies.
    Khadra M
    Swed Dent J Suppl; 2005; (172):1-63. PubMed ID: 15906852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone cell attachment to dental implants of different surface characteristics.
    Lumbikanonda N; Sammons R
    Int J Oral Maxillofac Implants; 2001; 16(5):627-36. PubMed ID: 11669244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
    Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H
    Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements.
    Cooper LF
    J Prosthet Dent; 1998 Oct; 80(4):439-49. PubMed ID: 9791791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study.
    Sammons RL; Lumbikanonda N; Gross M; Cantzler P
    Clin Oral Implants Res; 2005 Dec; 16(6):657-66. PubMed ID: 16307572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells.
    Park EK; Lee YE; Choi JY; Oh SH; Shin HI; Kim KH; Kim SY; Kim S
    Biomaterials; 2004 Aug; 25(17):3403-11. PubMed ID: 15020113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial attachment and subsequent behavior of osteoblastic cells and oral epithelial cells on titanium.
    Goto T; Yoshinari M; Kobayashi S; Tanaka T
    Biomed Mater Eng; 2004; 14(4):537-44. PubMed ID: 15472400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.
    Khadra M; Lyngstadaas SP; Haanaes HR; Mustafa K
    Biomaterials; 2005 Jun; 26(17):3503-9. PubMed ID: 15621240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation.
    Sader MS; Balduino A; Soares Gde A; Borojevic R
    Clin Oral Implants Res; 2005 Dec; 16(6):667-75. PubMed ID: 16307573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.