These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9581566)

  • 1. A re-examination in vivo of the phosphatidylcholine-galactolipid metabolic relationship during plant lipid biosynthesis.
    Mongrand S; Bessoule JJ; Cassagne C
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):853-8. PubMed ID: 9581566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids.
    Mongrand S; Cassagne C; Bessoule JJ
    Plant Physiol; 2000 Mar; 122(3):845-52. PubMed ID: 10712548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1977 Feb; 162(2):289-96. PubMed ID: 849284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover of the glycerolipids of pumpkin leaves. The importence of phosphatidylcholine.
    Roughan PG
    Biochem J; 1970 Mar; 117(1):1-8. PubMed ID: 5420955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactolipid synthesis in Vicia faba leaves. V. Redistribution of 14C-labelling in the polar moieties and the 14C-labelling kinetics of the fatty acids of the molecular species of mono- and digalactosyl diacylglycerols.
    Williams JP
    Biochim Biophys Acta; 1980 Jun; 618(3):461-72. PubMed ID: 7397208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.).
    Hellgren LI; Sandelius AS
    J Exp Bot; 2001 Dec; 52(365):2275-82. PubMed ID: 11709577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycerolipid synthesis in Chlorella kessleri 11 h. II. Effect of the CO2 concentration during growth.
    Sato N; Tsuzuki M; Kawaguchi A
    Biochim Biophys Acta; 2003 Jul; 1633(1):35-42. PubMed ID: 12842193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desaturation of linoleic acid from exogenous lipids by isolated chloroplasts.
    Jones AV; Harwood JL
    Biochem J; 1980 Sep; 190(3):851-4. PubMed ID: 7470086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis.
    Sato N; Moriyama T
    Eukaryot Cell; 2007 Jun; 6(6):1006-17. PubMed ID: 17416897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DGDG and Glycolipids in Plants and Algae.
    Kalisch B; Dörmann P; Hölzl G
    Subcell Biochem; 2016; 86():51-83. PubMed ID: 27023231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.
    Singh V; Singh PK; Siddiqui A; Singh S; Banday ZZ; Nandi AK
    J Plant Res; 2016 Mar; 129(2):285-293. PubMed ID: 26747130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lipids from chloroplast envelopes.
    Siebertz HP; Heinz E; Linscheid M; Joyard J; Douce R
    Eur J Biochem; 1979 Nov; 101(2):429-38. PubMed ID: 520307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of chloroplast polar lipids and measurement of galactolipid metabolism by high-performance liquid chromatography.
    Heemskerk JW; Bögemann G; Scheijen MA; Wintermans JF
    Anal Biochem; 1986 Apr; 154(1):85-91. PubMed ID: 3085545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.
    Bates PD; Durrett TP; Ohlrogge JB; Pollard M
    Plant Physiol; 2009 May; 150(1):55-72. PubMed ID: 19329563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Glycerolipid biosynthesis in vivo in subcellular fractions of greening wheat sprouts].
    Grechkin AN; Pankratova SI; Tarchevskiĭ IA
    Biokhimiia; 1980 Oct; 45(10):1804-9. PubMed ID: 7236768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolically Distinct Pools of Phosphatidylcholine Are Involved in Trafficking of Fatty Acids out of and into the Chloroplast for Membrane Production.
    Karki N; Johnson BS; Bates PD
    Plant Cell; 2019 Nov; 31(11):2768-2788. PubMed ID: 31511316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetics of incorporation in vivo of (14C)acetate and (14C)carbon dioxide into the fatty acids of glycerolipids in developing leaves.
    Slack CR; Roughan PG
    Biochem J; 1975 Nov; 152(2):217-28. PubMed ID: 1220682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and structure of a new galactolipid from oat seeds.
    Hamberg M; Liepinsh E; Otting G; Griffiths W
    Lipids; 1998 Apr; 33(4):355-63. PubMed ID: 9590622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana.
    Browse J; Warwick N; Somerville CR; Slack CR
    Biochem J; 1986 Apr; 235(1):25-31. PubMed ID: 3741384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.