These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9581603)

  • 1. Heuristic optimization algorithms applied to the quantification of spectroscopic data.
    Weber OM; Duc CO; Meier D; Boesiger P
    Magn Reson Med; 1998 May; 39(5):723-30. PubMed ID: 9581603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which prior knowledge? Quantification of in vivo brain 13C MR spectra following 13C glucose infusion using AMARES.
    Lanz B; Duarte JM; Kunz N; Mlynárik V; Gruetter R; Cudalbu C
    Magn Reson Med; 2013 Jun; 69(6):1512-22. PubMed ID: 22886985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-spectral regularization to improve magnetic resonance spectroscopic imaging quantification.
    Laruelo A; Chaari L; Tourneret JY; Batatia H; Ken S; Rowland B; Ferrand R; Laprie A
    NMR Biomed; 2016 Jul; 29(7):918-31. PubMed ID: 27166741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy.
    Cocuzzo D; Lin A; Ramadan S; Mountford C; Keshava N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4929-34. PubMed ID: 22255444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different quantification algorithms may lead to different results: a comparison using proton MRS lipid signals.
    Mosconi E; Sima DM; Osorio Garcia MI; Fontanella M; Fiorini S; Van Huffel S; Marzola P
    NMR Biomed; 2014 Apr; 27(4):431-43. PubMed ID: 24493129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T.
    Gottschalk M; Troprès I; Lamalle L; Grand S; Le Bas JF; Segebarth C
    NMR Biomed; 2016 Jul; 29(7):943-51. PubMed ID: 27197077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification issues of in vivo (1) H NMR spectroscopy of the rat brain investigated at 16.4 T.
    Hong ST; Pohmann R
    NMR Biomed; 2013 Jan; 26(1):74-82. PubMed ID: 22711580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
    Ma J; Wismans C; Cao Z; Klomp DWJ; Wijnen JP; Grissom WA
    Magn Reson Med; 2018 Jan; 79(1):31-40. PubMed ID: 28370494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correcting for Frequency Drift in Clinical Brain MR Spectroscopy.
    Rowland BC; Liao H; Adan F; Mariano L; Irvine J; Lin AP
    J Neuroimaging; 2017 Jan; 27(1):23-28. PubMed ID: 27601075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semiadiabatic spectral-spatial spectroscopic imaging (SASSI) sequence for improved high-field MR spectroscopic imaging.
    Feldman RE; Balchandani P
    Magn Reson Med; 2016 Oct; 76(4):1071-82. PubMed ID: 26519948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated iterative algorithm for the quantitative analysis of in vivo spectra based on the simplex optimization method.
    Lenkinski RE; Allman T; Scheiner JD; Deming SN
    Magn Reson Med; 1989 Jun; 10(3):338-48. PubMed ID: 2733590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel.
    Opstad KS; Bell BA; Griffiths JR; Howe FA
    Magn Reson Med; 2008 Nov; 60(5):1237-42. PubMed ID: 18836999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T.
    van Heeswijk RB; Pilloud Y; Morgenthaler FD; Gruetter R
    Magn Reson Med; 2012 Jun; 67(6):1523-7. PubMed ID: 22223461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sparse representation method for magnetic resonance spectroscopy quantification.
    Guo Y; Ruan S; Landré J; Constans JM
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1620-7. PubMed ID: 20483699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced neurochemical profile of the rat brain using in vivo (1)H NMR spectroscopy at 16.4 T.
    Hong ST; Balla DZ; Shajan G; Choi C; Uğurbil K; Pohmann R
    Magn Reson Med; 2011 Jan; 65(1):28-34. PubMed ID: 20928884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution MRS in the presence of field inhomogeneity via intermolecular double-quantum coherences on a 3-T whole-body scanner.
    Lin Y; Gu T; Chen Z; Kennedy S; Jacob M; Zhong J
    Magn Reson Med; 2010 Feb; 63(2):303-11. PubMed ID: 20099324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile.
    Mlynárik V; Cudalbu C; Xin L; Gruetter R
    J Magn Reson; 2008 Oct; 194(2):163-8. PubMed ID: 18703364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the use of Cramér-Rao minimum variance bounds for the design of magnetic resonance spectroscopy experiments.
    Bolliger CS; Boesch C; Kreis R
    Neuroimage; 2013 Dec; 83():1031-40. PubMed ID: 23933043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward quantitative short-echo-time in vivo proton MR spectroscopy without water suppression.
    Dong Z; Dreher W; Leibfritz D
    Magn Reson Med; 2006 Jun; 55(6):1441-6. PubMed ID: 16598735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of non-water-suppressed MR spectra with correction for motion-induced signal reduction.
    Lin JM; Tsai SY; Liu HS; Chung HW; Mulkern RV; Cheng CM; Yeh TC; Chen NK
    Magn Reson Med; 2009 Dec; 62(6):1394-403. PubMed ID: 19780180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.