BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9581608)

  • 1. A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate.
    Thompson RB; Allen PS
    Magn Reson Med; 1998 May; 39(5):762-71. PubMed ID: 9581608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference spectroscopy using PRESS asymmetry: application to glutamate, glutamine, and myo-inositol.
    Snyder J; Thompson RB; Wilman AH
    NMR Biomed; 2010 Jan; 23(1):41-7. PubMed ID: 19688783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute quantitation of glutamate, GABA and glutamine using localized 2D constant-time COSY spectroscopy in vivo.
    Watanabe H; Takaya N; Mitsumori F
    Magn Reson Med Sci; 2014; 13(1):25-32. PubMed ID: 24492740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy for the spectral filtering of myo-inositol and other strongly coupled spins.
    Kim H; Wild JM; Allen PS
    Magn Reson Med; 2004 Feb; 51(2):263-72. PubMed ID: 14755650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of spectral editing efficacy of multiple quantum filters in in vivo proton magnetic resonance spectroscopy.
    Kim H; Thompson RB; Allen PS
    J Magn Reson; 2012 Oct; 223():90-7. PubMed ID: 22975239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of metabolites with coupled spins to the STEAM sequence.
    Thompson RB; Allen PS
    Magn Reson Med; 2001 Jun; 45(6):955-65. PubMed ID: 11378872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T.
    Yang S; Hu J; Kou Z; Yang Y
    Magn Reson Med; 2008 Feb; 59(2):236-44. PubMed ID: 18228589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved resolution of glutamate, glutamine and γ-aminobutyric acid with optimized point-resolved spectroscopy sequence timings for their simultaneous quantification at 9.4 T.
    Dobberthien BJ; Tessier AG; Yahya A
    NMR Biomed; 2018 Jan; 31(1):. PubMed ID: 29105187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinction of the GABA 2.29 ppm resonance using triple refocusing at 3 T in vivo.
    Tiwari V; An Z; Wang Y; Choi C
    Magn Reson Med; 2018 Oct; 80(4):1307-1319. PubMed ID: 29446149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic imaging of human brain glutamate by water-suppressed J-refocused coherence transfer at 4.1 T.
    Pan JW; Mason GF; Pohost GM; Hetherington HP
    Magn Reson Med; 1996 Jul; 36(1):7-12. PubMed ID: 8795013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla.
    Schubert F; Gallinat J; Seifert F; Rinneberg H
    Neuroimage; 2004 Apr; 21(4):1762-71. PubMed ID: 15050596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly coupled versus uncoupled spin response to radio frequency interference effects: application to glutamate and glutamine in spectroscopic imaging.
    Snyder J; Thompson RB; Wild JM; Wilman AH
    NMR Biomed; 2008 May; 21(4):402-9. PubMed ID: 17918776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of metabolite yield using STEAM or PRESS sequences in vivo at 3.0 T, illustrated with myo-inositol.
    Kim H; Thompson RB; Hanstock CC; Allen PS
    Magn Reson Med; 2005 Apr; 53(4):760-9. PubMed ID: 15799042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of glutamate and glutamine (Glx) by turbo spectroscopic imaging.
    Yahya A; Fallone BG
    J Magn Reson; 2009 Feb; 196(2):170-7. PubMed ID: 19071046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA X2 multiplet measured pre- and post-administration of vigabatrin in human brain.
    Hanstock CC; Coupland NJ; Allen PS
    Magn Reson Med; 2002 Oct; 48(4):617-23. PubMed ID: 12353278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous observation of glutamate, gamma-aminobutyric acid, and glutamine in human brain at 4.7 T using localized two-dimensional constant-time correlation spectroscopy.
    Watanabe H; Takaya N; Mitsumori F
    NMR Biomed; 2008 Jun; 21(5):518-26. PubMed ID: 18351694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contamination of single-voxel multiple quantum filters by external water signals arising from intermolecular multiple quantum coherences.
    Thompson RB; Allen PS
    Magn Reson Med; 2009 Sep; 62(3):796-801. PubMed ID: 19449371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources of variability in the response of coupled spins to the PRESS sequence and their potential impact on metabolite quantification.
    Thompson RB; Allen PS
    Magn Reson Med; 1999 Jun; 41(6):1162-9. PubMed ID: 10371448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T.
    Gottschalk M; Troprès I; Lamalle L; Grand S; Le Bas JF; Segebarth C
    NMR Biomed; 2016 Jul; 29(7):943-51. PubMed ID: 27197077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy.
    Mayer D; Spielman DM
    Magn Reson Med; 2005 Aug; 54(2):439-42. PubMed ID: 16032664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.