These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9581611)
1. Quantitative assessment of bone marrow hematopoiesis using parametric magnetic resonance imaging. Ballon D; Jakubowski AA; Tulipano PK; Graham MC; Schneider E; Aghazadeh B; Chen QS; Koutcher JA Magn Reson Med; 1998 May; 39(5):789-800. PubMed ID: 9581611 [TBL] [Abstract][Full Text] [Related]
2. In vivo measurements of bone marrow cellularity using volume-localized proton NMR spectroscopy. Ballon D; Jakubowski A; Gabrilove J; Graham MC; Zakowski M; Sheridan C; Koutcher JA Magn Reson Med; 1991 May; 19(1):85-95. PubMed ID: 2046540 [TBL] [Abstract][Full Text] [Related]
3. MRI measurement of bone marrow cellularity for radiation dosimetry. Pichardo JC; Milner RJ; Bolch WE J Nucl Med; 2011 Sep; 52(9):1482-9. PubMed ID: 21799087 [TBL] [Abstract][Full Text] [Related]
4. Proton density water fraction as a biomarker of bone marrow cellularity: validation in ex vivo spine specimens. MacEwan IJ; Glembotski NE; D'Lima D; Bae W; Masuda K; Rashidi HH; Mell LK; Bydder M Magn Reson Imaging; 2014 Nov; 32(9):1097-101. PubMed ID: 25240720 [TBL] [Abstract][Full Text] [Related]
5. [Magnetic resonance in hematological diseases. Imaging of bone marrow]. Jensen KE Ugeskr Laeger; 1995 Aug; 157(35):4802-8. PubMed ID: 7676515 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging of bone marrow: diagnostic value in diffuse hematologic disorders. Steiner RM; Mitchell DG; Rao VM; Murphy S; Rifkin MD; Burk DL; Ballas SK; Vinitski S Magn Reson Q; 1990 Jan; 6(1):17-34. PubMed ID: 2200500 [TBL] [Abstract][Full Text] [Related]
7. Dynamic contrast-enhanced MR imaging of the water fraction of normal bone marrow and diffuse bone marrow disease. Katsuya T; Inoue T; Ishizaka H; Aoki J; Endo K Radiat Med; 2000; 18(5):291-7. PubMed ID: 11128399 [TBL] [Abstract][Full Text] [Related]
8. Modeling of T2* decay in vertebral bone marrow fat quantification. Karampinos DC; Ruschke S; Dieckmeyer M; Eggers H; Kooijman H; Rummeny EJ; Bauer JS; Baum T NMR Biomed; 2015 Nov; 28(11):1535-42. PubMed ID: 26423583 [TBL] [Abstract][Full Text] [Related]
9. Breath-hold MR measurements of fat fraction, T1 , and T2 * of water and fat in vertebral bone marrow. Le Ster C; Gambarota G; Lasbleiz J; Guillin R; Decaux O; Saint-Jalmes H J Magn Reson Imaging; 2016 Sep; 44(3):549-55. PubMed ID: 26918280 [TBL] [Abstract][Full Text] [Related]
10. Comparative diagnostic accuracy of magnetic resonance imaging and immunoscintigraphy for detection of bone marrow involvement in patients with malignant lymphoma. Altehoefer C; Blum U; Bathmann J; Wüstenberg C; Uhrmeister P; Laubenberger J; Lange W; Schwarzkopf J; Moser E; Langer M J Clin Oncol; 1997 May; 15(5):1754-60. PubMed ID: 9164182 [TBL] [Abstract][Full Text] [Related]
11. Magnetization transfer in hemopoietic bone marrow examined by localized proton spectroscopy. Schick F; Forster J; Einsele H; Weiss B; Lutz O; Claussen CD Magn Reson Med; 1995 Dec; 34(6):792-802. PubMed ID: 8598806 [TBL] [Abstract][Full Text] [Related]
12. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. Baum T; Yap SP; Dieckmeyer M; Ruschke S; Eggers H; Kooijman H; Rummeny EJ; Bauer JS; Karampinos DC J Magn Reson Imaging; 2015 Oct; 42(4):1018-23. PubMed ID: 25639780 [TBL] [Abstract][Full Text] [Related]
14. Tumor infiltration of bone marrow in patients with hemato-logical malignancies: dynamic contrast-enhanced magnetic resonance imaging. Zhang L; Mandel C; Yang ZY; Yang Q; Nibbs R; Westerman D; Pitman A Chin Med J (Engl); 2006 Aug; 119(15):1256-62. PubMed ID: 16919184 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations. Balasubramanian M; Jarrett DY; Mulkern RV NMR Biomed; 2016 May; 29(5):553-62. PubMed ID: 26866627 [TBL] [Abstract][Full Text] [Related]
16. Gd-DTPA enhanced MRI of reactive hematopoietic regions in marrow. Amano Y; Hayashi H; Kumazaki T J Comput Assist Tomogr; 1994; 18(2):214-7. PubMed ID: 8126270 [TBL] [Abstract][Full Text] [Related]
17. Marrow adiposity assessed on transiliac crest biopsy samples correlates with noninvasive measurement of marrow adiposity by proton magnetic resonance spectroscopy ((1)H-MRS) at the spine but not the femur. Cohen A; Shen W; Dempster DW; Zhou H; Recker RR; Lappe JM; Kepley A; Kamanda-Kosseh M; Bucovsky M; Stein EM; Nickolas TL; Shane E Osteoporos Int; 2015 Oct; 26(10):2471-8. PubMed ID: 25986383 [TBL] [Abstract][Full Text] [Related]
18. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy. Salas-Ramirez M; Tran-Gia J; Kesenheimer C; Weng AM; Kosmala A; Heidemeier A; Köstler H; Lassmann M Phys Med Biol; 2018 Jan; 63(2):025029. PubMed ID: 29130901 [TBL] [Abstract][Full Text] [Related]
19. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. de Bazelaire CM; Duhamel GD; Rofsky NM; Alsop DC Radiology; 2004 Mar; 230(3):652-9. PubMed ID: 14990831 [TBL] [Abstract][Full Text] [Related]
20. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Takaku T; Malide D; Chen J; Calado RT; Kajigaya S; Young NS Blood; 2010 Oct; 116(15):e41-55. PubMed ID: 20647571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]