These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 9581766)

  • 1. Olfactory reciprocal synapses: dendritic signaling in the CNS.
    Isaacson JS; Strowbridge BW
    Neuron; 1998 Apr; 20(4):749-61. PubMed ID: 9581766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb.
    Isaacson JS
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):337-42. PubMed ID: 11120892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
    Isaacson JS; Vitten H
    J Neurosci; 2003 Mar; 23(6):2032-9. PubMed ID: 12657661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells.
    Halabisky B; Friedman D; Radojicic M; Strowbridge BW
    J Neurosci; 2000 Jul; 20(13):5124-34. PubMed ID: 10864969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
    Schoppa NE; Kinzie JM; Sahara Y; Segerson TP; Westbrook GL
    J Neurosci; 1998 Sep; 18(17):6790-802. PubMed ID: 9712650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses.
    Chen WR; Xiong W; Shepherd GM
    Neuron; 2000 Mar; 25(3):625-33. PubMed ID: 10774730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels.
    Isaacson JS; Murphy GJ
    Neuron; 2001 Sep; 31(6):1027-34. PubMed ID: 11580901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
    Maher BJ; Westbrook GL
    J Neurophysiol; 2005 Dec; 94(6):3743-50. PubMed ID: 16107526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb.
    Didier A; Carleton A; Bjaalie JG; Vincent JD; Ottersen OP; Storm-Mathisen J; Lledo PM
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6441-6. PubMed ID: 11353824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents.
    Christie JM; Westbrook GL
    J Neurophysiol; 2003 May; 89(5):2466-72. PubMed ID: 12740404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
    Murphy GJ; Darcy DP; Isaacson JS
    Nat Neurosci; 2005 Mar; 8(3):354-64. PubMed ID: 15696160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jul; 82(1):489-94. PubMed ID: 10400976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.
    Halabisky B; Strowbridge BW
    J Neurophysiol; 2003 Aug; 90(2):644-54. PubMed ID: 12711716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb.
    Isaacson JS
    Neuron; 1999 Jun; 23(2):377-84. PubMed ID: 10399942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of N- and non-N-type calcium channels in synaptic transmission at corticostriatal synapses.
    Lovinger DM; Merritt A; Reyes D
    Neuroscience; 1994 Sep; 62(1):31-40. PubMed ID: 7816209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.