These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9581954)

  • 1. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks.
    Fishler MG
    J Cardiovasc Electrophysiol; 1998 Apr; 9(4):384-94. PubMed ID: 9581954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal effects of syncytial heterogeneities on cardiac far-field excitations during monophasic and biphasic shocks.
    Fishler MG; Vepa K
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1310-24. PubMed ID: 9869531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the interaction between propagating cardiac waves and monophasic and biphasic field stimuli: the importance of the induced spatial excitatory response.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Cardiovasc Electrophysiol; 1996 Dec; 7(12):1183-96. PubMed ID: 8985807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extension of refractoriness in a model of cardiac defibrillation.
    Trayanova NA; Aguel F; Skouibine K
    Pac Symp Biocomput; 1999; ():240-51. PubMed ID: 10380201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation in a model of cardiac defibrillation.
    Ashihara T; Yao T; Namba T; Ito M; Ikeda T; Kawase A; Toda S; Suzuki T; Inagaki M; Sugimachi M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Dec; 12(12):1393-403. PubMed ID: 11797997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac responses to premature monophasic and biphasic field stimuli. Results from cell and tissue modeling studies.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Electrocardiol; 1995; 28 Suppl():174-9. PubMed ID: 8656107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field stimulation of cardiac fibers with random spatial structure.
    Krassowska W
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):33-40. PubMed ID: 12617522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation among fibrillation, defibrillation, and cardiac pacing.
    Ideker RE; Zhou X; Knisley SB
    Pacing Clin Electrophysiol; 1995 Mar; 18(3 Pt 2):512-25. PubMed ID: 7777416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1973-9. PubMed ID: 2058729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postshock arrhythmogenesis in a slice of the canine heart.
    Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks.
    Kodama I; Sakuma I; Shibata N; Honjo H; Toyama J
    J Electrocardiol; 1999; 32 Suppl():92-9. PubMed ID: 10688309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postshock potential gradients and dispersion of repolarization in cells stimulated with monophasic and biphasic waveforms.
    Sobie EA; Tung L
    J Cardiovasc Electrophysiol; 1998 Jul; 9(7):743-56. PubMed ID: 9684722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the spatial frequency of polarization influences the induction of reentry in cardiac tissue.
    Beaudoin DL; Roth BJ
    J Cardiovasc Electrophysiol; 2005 Jul; 16(7):748-52. PubMed ID: 16050833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of cardiac tissue by extracellular electrical shocks: formation of 'secondary sources' at intercellular clefts in monolayers of cultured myocytes.
    Fast VG; Rohr S; Gillis AM; Kléber AG
    Circ Res; 1998 Feb; 82(3):375-85. PubMed ID: 9486666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.