These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9582207)

  • 21. Transitions between two different motor patterns in Xenopus embryos.
    Green CS; Soffe SR
    J Comp Physiol A; 1996 Feb; 178(2):279-91. PubMed ID: 8592307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycinergic inhibition contributes to the generation of rostral scratch motor patterns in the turtle spinal cord.
    Currie SN; Lee S
    J Neurosci; 1997 May; 17(9):3322-33. PubMed ID: 9096165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longitudinal coordination of motor output during swimming in Xenopus embryos.
    Tunstall MJ; Roberts A
    Proc Biol Sci; 1991 Apr; 244(1309):27-32. PubMed ID: 1677193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles.
    Soffe SR
    J Comp Physiol A; 1997 Jun; 180(6):711-5. PubMed ID: 9190047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lamprey spinal interneurons and their roles in swimming activity.
    Buchanan JT
    Brain Behav Evol; 1996; 48(5):287-96. PubMed ID: 8932869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate.
    Li WC; Soffe SR; Roberts A
    J Neurosci; 2002 Dec; 22(24):10924-34. PubMed ID: 12486187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation and insights of anesthetic action in an early vertebrate network: the isolated lamprey spinal cord.
    Jinks SL; Andrada J
    Anesth Analg; 2011 Nov; 113(5):1033-42. PubMed ID: 21788314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: experiments with antagonists.
    Zhao FY; Wolf E; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):887-901. PubMed ID: 9714868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of glycinergic inhibition on spinal neuron excitability during amphibian tadpole locomotion.
    Perrins R; Soffe SR
    Ann N Y Acad Sci; 1998 Nov; 860():472-4. PubMed ID: 9928343
    [No Abstract]   [Full Text] [Related]  

  • 36. Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis.
    McDearmid JR; Scrymgeour-Wedderburn JF; Sillar KT
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):111-7. PubMed ID: 9288679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing
    Ferrario A; Saccomanno V; Zhang HY; Borisyuk R; Li WC
    J Neurosci; 2023 Feb; 43(8):1387-1404. PubMed ID: 36693757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.