These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9582216)

  • 1. Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket.
    Stumpner A
    J Neurophysiol; 1998 May; 79(5):2408-15. PubMed ID: 9582216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of frequency-specific responses of omega neuron 1 in crickets (Teleogryllus oceanicus): a polysynaptic pathway for song?
    Faulkes Z; Pollack GS
    J Exp Biol; 2001 Apr; 204(Pt 7):1295-305. PubMed ID: 11249839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory DUM neurons in a bush-cricket: inhibited inhibitors.
    Stumpner A; Gubert S; Knorr DY; Göpfert MC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Sep; 206(5):793-807. PubMed ID: 32656577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pharmacological treatment and photoinactivation on the directional responses of an insect neuron.
    Molina J; Stumpner A
    J Exp Zool A Comp Exp Biol; 2005 Dec; 303(12):1085-103. PubMed ID: 16254919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.
    Bronsert M; Bingol H; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):72-85. PubMed ID: 12589693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae).
    Stumpner A
    J Exp Biol; 1997; 200(Pt 7):1089-101. PubMed ID: 9318908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective processing of calling songs by auditory interneurons in the female cricket, Gryllus pennsylvanicus: possible roles in behavior.
    Jeffery J; Navia B; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2005 May; 303(5):377-92. PubMed ID: 15828009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae).
    Stumpner A
    J Exp Biol; 1999 Aug; 202(Pt 15):2071-81. PubMed ID: 10393822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronous firing of inhibitory interneurons results in saturation of fast GABA(A) IPSC magnitude but not saturation of fast inhibitory efficacy in rat neocortical pyramidal cells.
    Ling DS; Benardo LS
    Synapse; 1998 Jan; 28(1):91-102. PubMed ID: 9414022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of 4-AP-induced, GABA(A)-dependent spontaneous synchronized activity mediated by the hippocampal interneuron network.
    Sinha SR; Saggau P
    J Neurophysiol; 2001 Jul; 86(1):381-91. PubMed ID: 11431518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two types of identified ascending interneurons with distinct GABA receptors in the crayfish terminal abdominal ganglion.
    Miyata H; Nagayama T; Takahata M
    J Neurophysiol; 1997 Mar; 77(3):1213-23. PubMed ID: 9084591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAA currents in immature dentate gyrus granule cells.
    Liu YB; Ye GL; Liu XS; Pasternak JF; Trommer BL
    J Neurophysiol; 1998 Nov; 80(5):2255-67. PubMed ID: 9819241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket.
    Lv M; Zhang X; Hedwig B
    J Neurophysiol; 2020 Mar; 123(3):865-875. PubMed ID: 31913780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different pools of postsynaptic GABAA receptors mediate inhibition evoked by low- and high-frequency presynaptic stimulation at hippocampal synapses.
    Stepanyuk AR; Borisyuk AL; Tsugorka TM; Belan PV
    Synapse; 2014 Aug; 68(8):344-54. PubMed ID: 24677449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.