These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 9582254)
1. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates. Wang XM; Basso DM; Terman JR; Bresnahan JC; Martin GF Exp Neurol; 1998 May; 151(1):50-69. PubMed ID: 9582254 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana. Martin GF; Terman JR; Wang XM Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803 [TBL] [Abstract][Full Text] [Related]
3. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana). Wang XM; Qin YQ; Terman JR; Martin GF Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256 [TBL] [Abstract][Full Text] [Related]
4. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. Wang XM; Terman JR; Martin GF J Comp Neurol; 1998 Aug; 398(1):83-97. PubMed ID: 9703028 [TBL] [Abstract][Full Text] [Related]
5. Evidence for growth of supraspinal axons through the lesion after transection of the thoracic spinal cord in the developing opossum Didelphis virginiana. Wang XM; Terman JR; Martin GF J Comp Neurol; 1996 Jul; 371(1):104-15. PubMed ID: 8835721 [TBL] [Abstract][Full Text] [Related]
6. Growth of dorsal spinocerebellar axons through a lesion of their spinal pathway during early development in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Dev Brain Res; 1996 May; 93(1-2):33-48. PubMed ID: 8804690 [TBL] [Abstract][Full Text] [Related]
7. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Dev Brain Res; 1999 Jan; 112(1):65-77. PubMed ID: 9974160 [TBL] [Abstract][Full Text] [Related]
8. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Bull; 2000 Dec; 53(6):845-55. PubMed ID: 11179852 [TBL] [Abstract][Full Text] [Related]
9. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Tillakaratne NJ; Guu JJ; de Leon RD; Bigbee AJ; London NJ; Zhong H; Ziegler MD; Joynes RL; Roy RR; Edgerton VR Neuroscience; 2010 Mar; 166(1):23-33. PubMed ID: 20006680 [TBL] [Abstract][Full Text] [Related]
10. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372 [TBL] [Abstract][Full Text] [Related]
11. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion. Wheaton BJ; Noor NM; Whish SC; Truettner JS; Dietrich WD; Zhang M; Crack PJ; Dziegielewska KM; Saunders NR PLoS One; 2013; 8(8):e71181. PubMed ID: 23951105 [TBL] [Abstract][Full Text] [Related]
12. Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum. Xu XM; Martin GF J Comp Neurol; 1991 Nov; 313(1):103-12. PubMed ID: 1761748 [TBL] [Abstract][Full Text] [Related]
13. Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica). Fry EJ; Stolp HB; Lane MA; Dziegielewska KM; Saunders NR J Comp Neurol; 2003 Nov; 466(3):422-44. PubMed ID: 14556298 [TBL] [Abstract][Full Text] [Related]
14. Anatomical and functional recovery following spinal cord transection in the chick embryo. Shimizu I; Oppenheim RW; O'Brien M; Shneiderman A J Neurobiol; 1990 Sep; 21(6):918-37. PubMed ID: 2077104 [TBL] [Abstract][Full Text] [Related]
15. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography. Bates CA; Stelzner DJ Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica. Wheaton BJ; Callaway JK; Ek CJ; Dziegielewska KM; Saunders NR PLoS One; 2011; 6(11):e26826. PubMed ID: 22073202 [TBL] [Abstract][Full Text] [Related]
17. Developmental plasticity of the rubrospinal tract in the North American opossum. Xu XM; Martin GF J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321 [TBL] [Abstract][Full Text] [Related]
18. Transplants enhance locomotion in neonatal kittens whose spinal cords are transected: a behavioral and anatomical study. Howland DR; Bregman BS; Tessler A; Goldberger ME Exp Neurol; 1995 Oct; 135(2):123-45. PubMed ID: 7589324 [TBL] [Abstract][Full Text] [Related]
19. Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica. Saunders NR; Kitchener P; Knott GW; Nicholls JG; Potter A; Smith TJ J Neurosci; 1998 Jan; 18(1):339-55. PubMed ID: 9412512 [TBL] [Abstract][Full Text] [Related]
20. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]