These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9582268)

  • 1. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions.
    Stavridi ES; Chehab NH; Caruso LC; Halazonetis TD
    Protein Sci; 1999 Sep; 8(9):1773-9. PubMed ID: 10493578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing phenylalanine environments in oligomeric structures with pentafluorophenylalanine and cyclohexylalanine.
    Nomura T; Kamada R; Ito I; Sakamoto K; Chuman Y; Ishimori K; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2011 Jun; 95(6):410-9. PubMed ID: 21280026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the dimer interface of transcription factor NFkappaB p50 homodimer.
    Sengchanthalangsy LL; Datta S; Huang DB; Anderson E; Braswell EH; Ghosh G
    J Mol Biol; 1999 Jun; 289(4):1029-40. PubMed ID: 10369780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and functionality of a designed p53 dimer.
    Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH
    J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain.
    McCoy M; Stavridi ES; Waterman JL; Wieczorek AM; Opella SJ; Halazonetis TD
    EMBO J; 1997 Oct; 16(20):6230-6. PubMed ID: 9321402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of domain interface residues to the stability of antibody CH3 domain homodimers.
    Dall'Acqua W; Simon AL; Mulkerrin MG; Carter P
    Biochemistry; 1998 Jun; 37(26):9266-73. PubMed ID: 9649307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of a buried polar interaction in an SH3 domain: sequence conservation provides the best prediction of stability effects.
    Maxwell KL; Davidson AR
    Biochemistry; 1998 Nov; 37(46):16172-82. PubMed ID: 9819209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.