These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9582301)

  • 1. Distinctions in agonist and antagonist specificity conferred by anionic residues of the nicotinic acetylcholine receptor.
    Osaka H; Sugiyama N; Taylor P
    J Biol Chem; 1998 May; 273(21):12758-65. PubMed ID: 9582301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors.
    Arias HR
    Neurochem Int; 2000 Jun; 36(7):595-645. PubMed ID: 10771117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site specificity of agonist-induced opening and desensitization of the Torpedo californica nicotinic acetylcholine receptor.
    Andreeva IE; Nirthanan S; Cohen JB; Pedersen SE
    Biochemistry; 2006 Jan; 45(1):195-204. PubMed ID: 16388595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding.
    Sugiyama N; Boyd AE; Taylor P
    J Biol Chem; 1996 Oct; 271(43):26575-81. PubMed ID: 8900129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology of ligand binding sites on the nicotinic acetylcholine receptor.
    Arias HR
    Brain Res Brain Res Rev; 1997 Oct; 25(2):133-91. PubMed ID: 9403137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of d-tubocurarine analogs with the Torpedo nicotinic acetylcholine receptor. Methylation and stereoisomerization affect site-selective competitive binding and binding to the noncompetitive site.
    Pedersen SE; Papineni RV
    J Biol Chem; 1995 Dec; 270(52):31141-50. PubMed ID: 8537377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.
    Xie Y; Cohen JB
    J Biol Chem; 2001 Jan; 276(4):2417-26. PubMed ID: 11056174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists.
    Sine SM; Quiram P; Papanikolaou F; Kreienkamp HJ; Taylor P
    J Biol Chem; 1994 Mar; 269(12):8808-16. PubMed ID: 8132615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan 86 of the alpha subunit in the Torpedo nicotinic acetylcholine receptor is important for channel activation by the bisquaternary ligand suberyldicholine.
    Kapur A; Davies M; Dryden WF; Dunn SM
    Biochemistry; 2006 Aug; 45(34):10337-43. PubMed ID: 16922509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.
    Chiara DC; Trinidad JC; Wang D; Ziebell MR; Sullivan D; Cohen JB
    Biochemistry; 2003 Jan; 42(2):271-83. PubMed ID: 12525154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-conotoxin residues that interact at close range with gamma-tyrosine-111 and mutant delta-tyrosine-113 on the Torpedo nicotinic acetylcholine receptor.
    Vélez-Carrasco W; Valdés S; Agresar L; Lettich A; Guerra AY; Hann RM
    Biochemistry; 2004 Oct; 43(39):12700-8. PubMed ID: 15449960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contributions of aspartyl residues in the acetylcholine receptor gamma and delta subunits to the binding of agonists and competitive antagonists.
    Martin M; Czajkowski C; Karlin A
    J Biol Chem; 1996 Jun; 271(23):13497-503. PubMed ID: 8662820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity.
    Lansdell SJ; Millar NS
    Neuropharmacology; 2000 Feb; 39(4):671-9. PubMed ID: 10728888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionality of nitrated acetylcholine receptor: the two-step formation of nitrotyrosines reveals their differential role in effectors binding.
    Négrerie M; Martin JL; Nghiêm HO
    FEBS Lett; 2005 May; 579(12):2643-7. PubMed ID: 15862303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the agonist binding site of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis: antagonist footprint and secondary structure prediction.
    Sullivan D; Chiara DC; Cohen JB
    Mol Pharmacol; 2002 Feb; 61(2):463-72. PubMed ID: 11809872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The local anaesthetics proadifen and adiphenine inhibit nicotinic receptors by different molecular mechanisms.
    Spitzmaul G; Gumilar F; Dilger JP; Bouzat C
    Br J Pharmacol; 2009 Jul; 157(5):804-17. PubMed ID: 19422391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor.
    Blount P; Merlie JP
    Neuron; 1989 Sep; 3(3):349-57. PubMed ID: 2642001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced inhibition of a mutant neuronal nicotinic acetylcholine receptor by agonists: protection of function by (E)-N-methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403).
    Papke RL
    J Pharmacol Exp Ther; 2002 May; 301(2):765-73. PubMed ID: 11961083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy.
    Martinez KL; Corringer PJ; Edelstein SJ; Changeux JP; Mérola F
    Biochemistry; 2000 Jun; 39(23):6979-90. PubMed ID: 10841780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.