These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9583079)

  • 41. Pre-steady-state transient currents mediated by the Na/K pump in internally perfused Xenopus oocytes.
    Holmgren M; Rakowski RF
    Biophys J; 1994 Mar; 66(3 Pt 1):912-22. PubMed ID: 8011923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maitotoxin induces insertion of different ion channels into the Xenopus oocyte plasma membrane via Ca(2+)-stimulated exocytosis.
    Weber WM; Popp C; Clauss W; Van Driessche W
    Pflugers Arch; 2000 Jan; 439(3):363-9. PubMed ID: 10650989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Avoiding the formation of vesicles by patch excision from Xenopus oocytes.
    Thon S; Benndorf K
    J Neurosci Methods; 2014 Mar; 225():29-31. PubMed ID: 24457054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short-term exposure to waterborne free silver has acute effects on membrane current of Xenopus oocytes.
    Schnizler MK; Bogdan R; Bennert A; Bury NR; Fronius M; Clauss W
    Biochim Biophys Acta; 2007 Feb; 1768(2):317-23. PubMed ID: 17092482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
    Methfessel C; Witzemann V; Takahashi T; Mishina M; Numa S; Sakmann B
    Pflugers Arch; 1986 Dec; 407(6):577-88. PubMed ID: 2432468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores.
    Yao Y; Parker I
    J Physiol; 1993 Aug; 468():275-95. PubMed ID: 8254510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium channel currents in Xenopus oocytes injected with rat skeletal muscle RNA.
    Dascal N; Lotan I; Karni E; Gigi A
    J Physiol; 1992 May; 450():469-90. PubMed ID: 1279162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recording of gating currents from Xenopus oocytes and gating noise analysis.
    Heinemann SH; Conti F; Stühmer W
    Methods Enzymol; 1992; 207():353-68. PubMed ID: 1382191
    [No Abstract]   [Full Text] [Related]  

  • 49. Use of stage II-III Xenopus oocytes to study voltage-dependent ion channels.
    Krafte DS; Lester HA
    Methods Enzymol; 1992; 207():339-45. PubMed ID: 1382189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imaging single-channel calcium microdomains by total internal reflection microscopy.
    Demuro A; Parker I
    Biol Res; 2004; 37(4):675-9. PubMed ID: 15709697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes.
    Jiang X; Bett GC; Li X; Bondarenko VE; Rasmusson RL
    J Physiol; 2003 Jun; 549(Pt 3):683-95. PubMed ID: 12730347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels.
    Noceti F; Baldelli P; Wei X; Qin N; Toro L; Birnbaumer L; Stefani E
    J Gen Physiol; 1996 Sep; 108(3):143-55. PubMed ID: 8882860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic characterization of the voltage-gated currents possessed by Xenopus embryo spinal neurons.
    Dale N
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):473-88. PubMed ID: 8847641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes.
    De Waard M; Campbell KP
    J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):619-34. PubMed ID: 7562605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mg(2+)-dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes.
    Nichols CG; Ho K; Hebert S
    J Physiol; 1994 May; 476(3):399-409. PubMed ID: 8057249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of Ca2+ channels from rat brain with model phenylketonuria in Xenopus oocytes.
    Dzhura I; Naidenov V; Zhuravleva S; Kostyuk P; Shuba Y
    Brain Res; 1998 Feb; 783(2):280-5. PubMed ID: 9507164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.
    Murenzi E; Toltin AC; Symington SB; Morgan MM; Clark JM
    Neurotoxicology; 2017 May; 60():260-273. PubMed ID: 27063102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels.
    Takahashi T; Neher E; Sakmann B
    Proc Natl Acad Sci U S A; 1987 Jul; 84(14):5063-7. PubMed ID: 2440042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation.
    Zhang Q; Pacheco MA; Doupnik CA
    J Physiol; 2002 Dec; 545(2):355-73. PubMed ID: 12456817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of voltage-dependent calcium channels expressed in Xenopus oocytes injected with mRNA from rat heart.
    Lory P; Rassendren FA; Richard S; Tiaho F; Nargeot J
    J Physiol; 1990 Oct; 429():95-112. PubMed ID: 1703576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.