BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 9584151)

  • 1. An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus.
    McNally LM; McNally MT
    Mol Cell Biol; 1998 Jun; 18(6):3103-11. PubMed ID: 9584151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SR protein splicing factors interact with the Rous sarcoma virus negative regulator of splicing element.
    McNally LM; McNally MT
    J Virol; 1996 Feb; 70(2):1163-72. PubMed ID: 8551577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two regions promote U11 small nuclear ribonucleoprotein particle binding to a retroviral splicing inhibitor element (negative regulator of splicing).
    McNally LM; Yee L; McNally MT
    J Biol Chem; 2004 Sep; 279(37):38201-8. PubMed ID: 15252020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the negative regulator of splicing element and a 3' splice site: requirement for U1 small nuclear ribonucleoprotein and the 3' splice site branch point/pyrimidine tract.
    Cook CR; McNally MT
    J Virol; 1999 Mar; 73(3):2394-400. PubMed ID: 9971823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U1 small nuclear ribonucleoprotein and splicing inhibition by the rous sarcoma virus negative regulator of splicing element.
    McNally LM; McNally MT
    J Virol; 1999 Mar; 73(3):2385-93. PubMed ID: 9971822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SR protein and snRNP requirements for assembly of the Rous sarcoma virus negative regulator of splicing complex in vitro.
    Cook CR; McNally MT
    Virology; 1998 Mar; 242(1):211-20. PubMed ID: 9501036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element.
    Fogel BL; McNally LM; McNally MT
    Nucleic Acids Res; 2002 Feb; 30(3):810-7. PubMed ID: 11809895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the SF2/ASF binding sites in the bovine growth hormone exonic splicing enhancer.
    Dirksen WP; Li X; Mayeda A; Krainer AR; Rottman FM
    J Biol Chem; 2000 Sep; 275(37):29170-7. PubMed ID: 10880506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous nuclear ribonucleoprotein H is required for optimal U11 small nuclear ribonucleoprotein binding to a retroviral RNA-processing control element: implications for U12-dependent RNA splicing.
    McNally LM; Yee L; McNally MT
    J Biol Chem; 2006 Feb; 281(5):2478-88. PubMed ID: 16308319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of overlapping U1 and U11 5' splice site sequences in a negative regulator of splicing.
    Hibbert CS; Gontarek RR; Beemon KL
    RNA; 1999 Mar; 5(3):333-43. PubMed ID: 10094303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of an RSV intronic element abolishes both U11/U12 snRNP binding and negative regulation of splicing.
    Gontarek RR; McNally MT; Beemon K
    Genes Dev; 1993 Oct; 7(10):1926-36. PubMed ID: 8405999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities.
    Tacke R; Manley JL
    EMBO J; 1995 Jul; 14(14):3540-51. PubMed ID: 7543047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus.
    Maciolek NL; McNally MT
    J Virol; 2007 Oct; 81(20):11208-17. PubMed ID: 17670832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells.
    Shih SR; Krug RM
    EMBO J; 1996 Oct; 15(19):5415-27. PubMed ID: 8895585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious anemia virus RNA.
    Chung H ; Derse D
    J Biol Chem; 2001 Jun; 276(22):18960-7. PubMed ID: 11278454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing.
    Shaw SD; Chakrabarti S; Ghosh G; Krainer AR
    PLoS One; 2007 Sep; 2(9):e854. PubMed ID: 17786225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.
    Gallego ME; Gattoni R; Stévenin J; Marie J; Expert-Bezançon A
    EMBO J; 1997 Apr; 16(7):1772-84. PubMed ID: 9130721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences.
    Schaal TD; Maniatis T
    Mol Cell Biol; 1999 Mar; 19(3):1705-19. PubMed ID: 10022858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.
    Liu X; Mayeda A; Tao M; Zheng ZM
    J Virol; 2003 Feb; 77(3):2105-15. PubMed ID: 12525645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.
    Dauksaite V; Akusjärvi G
    Biochem J; 2004 Jul; 381(Pt 2):343-50. PubMed ID: 15068396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.