These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 958448)

  • 1. Proton magnetic resonance studies of conformation and flexibility of enkephalin peptides.
    Jones CR; Gibbons WA; Garsky V
    Nature; 1976 Aug; 262(5571):779-82. PubMed ID: 958448
    [No Abstract]   [Full Text] [Related]  

  • 2. Preliminary analysis of 1H and 13C spectral and relaxation behavior in methionine-enkephalin.
    Bleich HE; Cutnell JD; Day AR; Freer RJ; Glasel JA; McKelvy JF
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2589-93. PubMed ID: 1066668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation of Met5-enkephalin determined by high field PMR spectroscopy.
    Roques BP; Garbay-Jaureguiberry C; Oberlin R; Anteunis M; Lala AK
    Nature; 1976 Aug; 262(5571):778-9. PubMed ID: 958447
    [No Abstract]   [Full Text] [Related]  

  • 4. 15N spin-lattice relaxation study of linear peptides: preliminary results on Leu-enkephalin and Tyr-Gly-Gly-Phe.
    Marion D; Garbay-Jaureguiberry C; Roques BP
    Biochem Biophys Res Commun; 1981 Aug; 101(3):711-8. PubMed ID: 7306111
    [No Abstract]   [Full Text] [Related]  

  • 5. Conformational studies of oligopeptides containing proline and glycine.
    Stimson ER; Zimmerman SS; Scheraga HA
    Macromolecules; 1977; 10(5):1049-60. PubMed ID: 916731
    [No Abstract]   [Full Text] [Related]  

  • 6. Proton and carbon magnetic resonance studies of the synthetic polypentapeptide of elastin.
    Urry DW; Mitchell LW; Ohnishi T; Long MM
    J Mol Biol; 1975 Jul; 96(1):101-17. PubMed ID: 1159785
    [No Abstract]   [Full Text] [Related]  

  • 7. Elucidation of the receptor-bound conformation of the enkephalins.
    Gorin FA; Balasubramanian TM; Barry CD; Marshall GR
    J Supramol Struct; 1978; 9(1):27-39. PubMed ID: 743340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of the repeat peptides of elastin in solution: an application of proton and carbon-13 magnetic resonance to the determination of polypeptide secondary structure.
    Urry DW; Long MM
    CRC Crit Rev Biochem; 1976 Jun; 4(1):1-45. PubMed ID: 782788
    [No Abstract]   [Full Text] [Related]  

  • 9. A proton magnetic resonance study of the conformation of methionine-enkephalin as a function of pH.
    Anteunis M; Lala AK; Garbay-Jaureguiberry C; Roques BP
    Biochemistry; 1977 Apr; 16(7):1462-6. PubMed ID: 14681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-bond lengths in polypeptide helices: no evidence for short hydrogen bonds.
    Aravinda S; Datta S; Shamala N; Balaram P
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6728-31. PubMed ID: 15593138
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for analgesic activity of enkephalin in the mouse.
    Buscher HH; Hill RC; Römer D; Cardinaux F; Closse A; Hauser D; Pless J
    Nature; 1976 Jun; 261(5559):423-5. PubMed ID: 934276
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and structure identification of a morphine-like peptide "enkephalin" in bovine brain.
    Simantov R; Snyder H
    Life Sci; 1976 Apr; 18(8):781-7. PubMed ID: 1271948
    [No Abstract]   [Full Text] [Related]  

  • 13. The conformational studies of plipastatin A1 by 400 MHz proton magnetic resonance.
    Nishikiori T; Naganawa H; Muraoka Y; Aoyagi T; Umezawa H
    J Antibiot (Tokyo); 1986 Jun; 39(6):860-3. PubMed ID: 3733534
    [No Abstract]   [Full Text] [Related]  

  • 14. Conformational analysis of cyclic partially modified retro-inverso enkephalin analogues by proton NMR.
    Mammi NJ; Goodman M
    Biochemistry; 1986 Nov; 25(23):7607-14. PubMed ID: 3801437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hydrogen bonding on the rotamer distribution of the histidine side chain in peptides: 1H NMR and CD studies.
    Tran T; Lintner K; Toma F; Fermandjian S
    Biochim Biophys Acta; 1977 Jun; 492(2):245-53. PubMed ID: 18203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental attempt to simulate receptor site environment. A 500-MHz 1H nuclear magnetic resonance study of enkephalin amides.
    Temussi PA; Tancredi T; Pastore A; Castiglione-Morelli MA
    Biochemistry; 1987 Dec; 26(24):7856-63. PubMed ID: 2827761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical stability of de novo designed alpha-aminoisobutyric acid-rich peptides at high temperatures.
    Augspurger JD; Bindra VA; Scheraga HA; Kuki A
    Biochemistry; 1995 Feb; 34(8):2566-76. PubMed ID: 7873537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies on the structure of the tetrapeptide tuftsin, L-threonyl-L-lysyl-L-prolyl-L-arginine, and its pentapeptide analogue L-threonyl-L-lysyl-L-prolyl-L-prolyl-L-arginine.
    Blumenstein M; Layne PP; Najjar VA
    Biochemistry; 1979 Nov; 18(23):5247-53. PubMed ID: 40597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of echistatin, the smallest active RGD protein.
    Saudek V; Atkinson RA; Pelton JT
    Biochemistry; 1991 Jul; 30(30):7369-72. PubMed ID: 1854743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopic study of C7 intramolecular hydrogen bonds in peptides.
    Rao CP; Balaram P; Rao CN
    Biopolymers; 1983 Sep; 22(9):2091-104. PubMed ID: 6626692
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.