These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 9585179)

  • 1. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function.
    Cheetham ME; Caplan AJ
    Cell Stress Chaperones; 1998 Mar; 3(1):28-36. PubMed ID: 9585179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological consequences of the over-production of E. coli truncated molecular chaperone DnaJ.
    al-Herran S; Ashraf W
    FEMS Microbiol Lett; 1998 May; 162(1):117-22. PubMed ID: 9595671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli.
    Wild J; Rossmeissl P; Walter WA; Gross CA
    J Bacteriol; 1996 Jun; 178(12):3608-13. PubMed ID: 8655561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cumulative impact of chaperone-mediated folding on genome evolution.
    Bogumil D; Dagan T
    Biochemistry; 2012 Dec; 51(50):9941-53. PubMed ID: 23167595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simian virus 40 T antigens and J domains: analysis of Hsp40 cochaperone functions in Escherichia coli.
    Genevaux P; Lang F; Schwager F; Vartikar JV; Rundell K; Pipas JM; Georgopoulos C; Kelley WL
    J Virol; 2003 Oct; 77(19):10706-13. PubMed ID: 12970459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL.
    Bhandari V; Houry WA
    Adv Exp Med Biol; 2015; 883():271-94. PubMed ID: 26621473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperones in biology and medicine at Obernai.
    Bergeron JJ; Craig EA; Horwich AL; Langer T; Multhoff G; Smith DF; Hightower LE
    Cell Stress Chaperones; 1997 Dec; 2(4):220-8. PubMed ID: 9495279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analyses of the Ssc1p, Mdj1p, and Mge1p Saccharomyces cerevisiae mitochondrial proteins in Escherichia coli.
    Deloche O; Kelley WL; Georgopoulos C
    J Bacteriol; 1997 Oct; 179(19):6066-75. PubMed ID: 9324254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ
    Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y
    Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T; Tsuruno K; Tanatsugu R; Miyazaki A; Kondo H; Tabata A; Whiley RA; Sonomoto K; Nagamune H
    Microbiol Immunol; 2018 Nov; 62(11):681-693. PubMed ID: 30239035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the double mutation of dnaJ and cbpA, whose gene products function as molecular chaperones in Escherichia coli.
    Ueguchi C; Shiozawa T; Kakeda M; Yamada H; Mizuno T
    J Bacteriol; 1995 Jul; 177(13):3894-6. PubMed ID: 7601860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DnaJ potentiates the interaction between DnaK and alpha-helical peptides.
    de Crouy-Chanel A; Hodges RS; Kohiyama M; Richarme G
    Biochem Biophys Res Commun; 1997 Apr; 233(3):627-30. PubMed ID: 9168902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE.
    Sugimoto S; Higashi C; Saruwatari K; Nakayama J; Sonomoto K
    FEBS Lett; 2007 Jun; 581(16):2993-9. PubMed ID: 17544398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure and function of the DnaJ/Hsp40 family].
    Minami Y
    Tanpakushitsu Kakusan Koso; 1996 Jun; 41(7):875-82. PubMed ID: 8966216
    [No Abstract]   [Full Text] [Related]  

  • 19. A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40.
    Edkins AL; Ludewig MH; Blatch GL
    Int J Biochem Cell Biol; 2004 Aug; 36(8):1585-98. PubMed ID: 15147737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes.
    Chien V; Aitken JF; Zhang S; Buchanan CM; Hickey A; Brittain T; Cooper GJ; Loomes KM
    Biochem J; 2010 Nov; 432(1):113-21. PubMed ID: 20735358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.