BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9585268)

  • 1. White-ivory assay of Drosophila melanogaster under deficient repair conditions.
    Ferreiro JA; Sierra LM; Comendador MA
    Environ Mol Mutagen; 1998; 31(3):292-8. PubMed ID: 9585268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the white-ivory assay of Drosophila melanogaster a useful tool in genetic toxicology?
    Ferreiro JA; Consuegra S; Sierra LM; Comendador MA
    Environ Mol Mutagen; 1997; 29(4):406-17. PubMed ID: 9212793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The somatic white-ivory eye spot test does not detect the same spectrum of genotoxic events as the wing somatic mutation and recombination test in Drosophila melanogaster.
    Graf U; Würgler FE
    Environ Mol Mutagen; 1996; 27(3):219-26. PubMed ID: 8625958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination.
    Vogel EW; Nivard MJ
    Mutagenesis; 1993 Jan; 8(1):57-81. PubMed ID: 8450769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additional data in support of the quadruplicated white-ivory reversion system to test for somatic genotoxicity in Drosophila melanogaster.
    Xamena N; Egido A; Velázquez A; Creus A; Marcos R
    Mutat Res; 1991 Jun; 252(3):305-12. PubMed ID: 1646957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The w/w+ SMART is a useful tool for the evaluation of pesticides.
    Aguirrezabalaga I; Santamaría I; Comendador MA
    Mutagenesis; 1994 Jul; 9(4):341-6. PubMed ID: 7968576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotoxic effect of griseofulvin in somatic cells of Drosophila melanogaster.
    Inoue H; Baba H; Awano K; Yoshikawa K
    Mutat Res; 1995 Jul; 343(4):229-34. PubMed ID: 7623877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodological aspects of the white-ivory assay of Drosophila melanogaster.
    Ferreiro JA; Sierra LM; Comendador MA
    Mutat Res; 1995 Oct; 335(2):151-61. PubMed ID: 7477046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair dependence of somatic mutagenesis of transposon-caused white alleles in Drosophila melanogaster after treatment with alkylating agents.
    Fujikawa K; Kondo S
    Genetics; 1986 Mar; 112(3):505-22. PubMed ID: 3007278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genotoxicities of N-nitrosamines in Drosophila melanogaster in vivo: the correlation of mutagenicity in the wing spot test with the DNA damages detected by the DNA-repair test.
    Negishi T; Shiotani T; Fujikawa K; Hayatsu H
    Mutat Res; 1991 Apr; 252(2):119-28. PubMed ID: 1901957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vivo genetic activity profile of the monofunctional nitrogen mustard 2-chloroethylamine differs drastically from its bifunctional counterpart mechlorethamine.
    Wijen JP; Nivard MJ; Vogel EW
    Carcinogenesis; 2000 Oct; 21(10):1859-67. PubMed ID: 11023544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-damaging potency and genotoxicity of aflatoxin M1 in somatic cells in vivo of Drosophila melanogaster.
    Shibahara T; Ogawa HI; Ryo H; Fujikawa K
    Mutagenesis; 1995 May; 10(3):161-4. PubMed ID: 7666765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic cell mutagenicity in Drosophila melanogaster in comparison with genetic damage in early germ-cell stages.
    Vogel EW; Zijlstra JA
    Mutat Res; 1987 Oct; 180(2):189-200. PubMed ID: 3116419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of excision repair defective cells in the wing somatic mutation and recombination test in Drosophila melanogaster.
    Graf U; Hall CB; van Schaik N
    Environ Mol Mutagen; 1990; 16(4):225-37. PubMed ID: 2123787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxic effects of strong static magnetic fields in DNA-repair defective mutants of Drosophila melanogaster.
    Takashima Y; Miyakoshi J; Ikehata M; Iwasaka M; Ueno S; Koana T
    J Radiat Res; 2004 Sep; 45(3):393-7. PubMed ID: 15613784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster.
    Szakmary A; Huang SM; Chang DT; Beachy PA; Sander M
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1607-12. PubMed ID: 8643678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between cisplatin-induced adducts and DNA strand-breaks, mutation and recombination in vivo in somatic cells of Drosophila melanogaster, under different conditions of nucleotide excision repair.
    García Sar D; Aguado L; Montes Bayón M; Comendador MA; Blanco González E; Sanz-Medel A; Sierra LM
    Mutat Res; 2012 Jan; 741(1-2):81-8. PubMed ID: 22108251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo repair of ENU-induced oxygen alkylation damage by the nucleotide excision repair mechanism in Drosophila melanogaster.
    Tosal L; Comendador MA; Sierra LM
    Mol Genet Genomics; 2001 Apr; 265(2):327-35. PubMed ID: 11361344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation in Drosophila melanogaster of the mutagenic potential of furfural in the mei-9a test for chromosome loss in germ-line cells and the wing spot test for mutational activity in somatic cells.
    Rodriguez-Arnaiz R; Romas Morales P; Zimmering S
    Mutat Res; 1992 Aug; 280(2):75-80. PubMed ID: 1378540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic and methodological aspects of chemically-induced somatic mutation and recombination in Drosophila melanogaster.
    Vogel EW; Zijlstra JA
    Mutat Res; 1987 Oct; 182(5):243-64. PubMed ID: 3116423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.