These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 95855)

  • 21. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Responses and organization of the receptive fields of neurons of the basal optic nucleus of the frog tegmentum during visual stimulation].
    Aleĭnikova TV; Khrenkova VV; Kriukovskikh ON
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jan; 70(1):9-15. PubMed ID: 6698257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Small-field receptor monocular neurons in the optic tectum of frogs: analytical properties and problems of classification].
    Gaillard F
    J Physiol (Paris); 1984; 79(3):139-44. PubMed ID: 6332192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel, continuous visual motion induces c-fos expression in the avian optokinetic nuclei and optic tectum.
    Rojas X; Marín G; Wallman J
    Neuroscience; 2009 May; 160(2):540-54. PubMed ID: 19217933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses.
    Ewert JP; Schürg-Pfeiffer E; Schwippert WW
    Acta Biol Hung; 1996; 47(1-4):89-111. PubMed ID: 9124015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current source density analysis of contra- and ipsilateral isthmotectal connections of the frog.
    Hoshino N; Tsurudome K; Nakagawa H; Matsumoto N
    Vis Neurosci; 2006; 23(5):713-9. PubMed ID: 17020627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog.
    Gruberg ER; Wallace MT; Caine HS; Mote MI
    Brain Behav Evol; 1991; 37(2):92-103. PubMed ID: 2054588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparisons of visual properties between tectal and thalamic neurons with overlapping receptive fields in the pigeon.
    Yang J; Zhang C; Wang SR
    Brain Behav Evol; 2005; 65(1):33-9. PubMed ID: 15489563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomy and physiology of a binocular system in the frog Rana pipiens.
    Gruberg ER; Lettvin JY
    Brain Res; 1980 Jun; 192(2):313-25. PubMed ID: 6966525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual responses of neurons in the avian nucleus isthmi.
    Yan K; Wang SR
    Neurosci Lett; 1986 Mar; 64(3):340-4. PubMed ID: 2421216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuronal code of spatial visual information in the caudate nucleus.
    Gombköto P; Rokszin A; Berényi A; Braunitzer G; Utassy G; Benedek G; Nagy A
    Neuroscience; 2011 May; 182():225-31. PubMed ID: 21376107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2010 Aug; 26(4):304-16. PubMed ID: 20651812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attentional capture? Synchronized feedback signals from the isthmi boost retinal signals to higher visual areas.
    Marín GJ; Durán E; Morales C; González-Cabrera C; Sentis E; Mpodozis J; Letelier JC
    J Neurosci; 2012 Jan; 32(3):1110-22. PubMed ID: 22262908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Columnar organization of visually driven neurons in the superior colliculus of the cat.
    Dec K; Harutiunian-Kozak B
    Acta Neurobiol Exp (Wars); 1972; 32(1):35-42. PubMed ID: 5014731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of background illumination on the responses of the neurons of the cat's superior colliculus to moving stimuli.
    Harutiunian-Kozak B; Wróbel A; Dec K
    Acta Neurobiol Exp (Wars); 1975; 35(2):105-14. PubMed ID: 1180132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses and properties of receptive fields of neurons in the visual projection zone of the pigeon hyperstriatum.
    Gusel'nikov VI; Morenkov ED; Hunh DC
    Neurosci Behav Physiol; 1977; 8(3):210-5. PubMed ID: 617217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receptive-field properties in reptilian optic tectum: some comparisons with mammals.
    Stein BE; Gaither NS
    J Neurophysiol; 1983 Jul; 50(1):102-24. PubMed ID: 6875641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of the receptive fields of frog retinal ganglion cells as revealed by their response to moving stimuli.
    Hodos W; Dawes EA; Keating MJ
    Neuroscience; 1982 Jun; 7(6):1533-44. PubMed ID: 6289173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motion processing with wide-field neurons in the retino-tecto-rotundal pathway.
    Dellen B; Wessel R; Clark JW; Wörgötter F
    J Comput Neurosci; 2010 Feb; 28(1):47-64. PubMed ID: 19795201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of visual information in midbrain centers.
    Harutiunian-Kozak B; Dec K; Wróbel A
    Acta Neurobiol Exp (Wars); 1974; 34(1):127-43. PubMed ID: 4838080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.