BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 9585528)

  • 1. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin.ADP complex to actin.
    Kovács M; Tóth J; Nyitray L; Sellers JR
    Biochemistry; 2004 Apr; 43(14):4219-26. PubMed ID: 15065866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and spectroscopic characterization of fluorescent ribose-modified ATP analogs upon interaction with skeletal muscle myosin subfragment 1.
    Conibear PB; Jeffreys DS; Seehra CK; Eaton RJ; Bagshaw CR
    Biochemistry; 1996 Feb; 35(7):2299-308. PubMed ID: 8652570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence of spectrin-bound prodan.
    Chakrabarti A
    Biochem Biophys Res Commun; 1996 Sep; 226(2):495-7. PubMed ID: 8806662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A series of related nucleotide analogues that aids optimization of fluorescence signals in probing the mechanism of P-loop ATPases, such as actomyosin.
    Webb MR; Reid GP; Munasinghe VR; Corrie JE
    Biochemistry; 2004 Nov; 43(45):14463-71. PubMed ID: 15533051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,4-Dinitrophenol reduces the reactivity of Lys553 in the lower 50-kDa region of myosin subfragment 1.
    Bomfim TR; Machado LE; Lima LM; Sorenson MM; Salerno VP
    Arch Biochem Biophys; 2011 Jan; 505(1):105-11. PubMed ID: 20887708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Increased substrate selectivity during transition from Ca2+-activated to K+,EDTA-activated nucleoside triphosphatase activity of heavy meromyosin].
    Petushkova EV; Grishin MN; Baranova LA; Guliaev NN
    Biokhimiia; 1988 Jan; 53(1):143-9. PubMed ID: 2965918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes of the myosin heads during hydrolysis of ATP as analyzed by x-ray solution scattering.
    Sugimoto Y; Tokunaga M; Takezawa Y; Ikebe M; Wakabayashi K
    Biophys J; 1995 Apr; 68(4 Suppl):29S-33S; discussion 33S-34S. PubMed ID: 7787093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of binding and hydrolysis of a series of nucleoside triphosphates by actomyosin-S1. Relationship between solution rate constants and properties of muscle fibers.
    White HD; Belknap B; Jiang W
    J Biol Chem; 1993 May; 268(14):10039-45. PubMed ID: 8486675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functionally different states of the "hydrophobic pocket" of the myosin ATPase center].
    Babiĭchuk EB; Filenko AM
    Mol Biol (Mosk); 1991; 25(2):381-7. PubMed ID: 1831876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A myosin head can interact with two chemically modified G-actin monomers at ATP-modulated multiple sites.
    Arata T
    Biochemistry; 1996 Dec; 35(50):16061-8. PubMed ID: 8973176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
    Shaw MA; Ostap EM; Goldman YE
    Biochemistry; 2003 May; 42(20):6128-35. PubMed ID: 12755615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient kinetic analysis of N-phenylmaleimide-reacted myosin subfragment-1.
    Xie L; Li WX; Rhodes T; White H; Schoenberg M
    Biochemistry; 1999 May; 38(18):5925-31. PubMed ID: 10231546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity.
    Joel PB; Sweeney HL; Trybus KM
    Biochemistry; 2003 Aug; 42(30):9160-6. PubMed ID: 12885250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study.
    Peyser YM; Ajtai K; Werber MM; Burghardt TP; Muhlrad A
    Biochemistry; 1997 Apr; 36(17):5170-8. PubMed ID: 9136878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism for coupling free energy in ATPase to the myosin active site.
    Park S; Ajtai K; Burghardt TP
    Biochemistry; 1997 Mar; 36(11):3368-72. PubMed ID: 9116016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.