BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9586014)

  • 1. Cooperative alkylation by duocarmycin A-distamycin A heterodimer.
    Ozeki Y; Sugiyama H; Saito I
    Nucleic Acids Symp Ser; 1997; (37):91-2. PubMed ID: 9586014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient guanine alkylation through cooperative heterodimeric formation of duocarmycin A and distamycin A.
    Isomura M; Sugiyama H; Saito I
    Nucleic Acids Symp Ser; 1995; (34):47-8. PubMed ID: 8841545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distamycin A modulates the sequence specificity of DNA alkylation by duocarmycin A.
    Sugiyama H; Lian C; Isomura M; Saito I; Wang AH
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14405-10. PubMed ID: 8962064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distamycin A enhances the cytotoxicity of duocarmycin A and suppresses duocarmycin A-induced apoptosis in human lung carcinoma cells.
    Hirota M; Fujiwara T; Mineshita S; Sugiyama H; Teraoka H
    Int J Biochem Cell Biol; 2007; 39(5):988-96. PubMed ID: 17321782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative alkylation of double-strand human telomere repeat sequences by PI polyamides with 11-base-pair recognition based on a heterotrimeric design.
    Kashiwazaki G; Bando T; Shinohara K; Minoshima M; Nishijima S; Sugiyama H
    Bioorg Med Chem; 2009 Feb; 17(3):1393-7. PubMed ID: 19124249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A.
    Yamamoto K; Sugiyama H; Kawanishi S
    Biochemistry; 1993 Feb; 32(4):1059-66. PubMed ID: 8424935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural basis for in situ activation of DNA alkylation by duocarmycin SA.
    Smith JA; Bifulco G; Case DA; Boger DL; Gomez-Paloma L; Chazin WJ
    J Mol Biol; 2000 Jul; 300(5):1195-204. PubMed ID: 10903864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site specific covalent alkylation of DNA by antitumor antibiotics, duocarmycin A and kapurimycin A3.
    Sugiyama H; Lam CK; Hosoda M; Saito I
    Nucleic Acids Symp Ser; 1991; (25):75-6. PubMed ID: 1842103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity in the actions of drugs that bind in the DNA minor groove.
    Albert FG; Eckdahl TT; Fitzgerald DJ; Anderson JN
    Biochemistry; 1999 Aug; 38(31):10135-46. PubMed ID: 10433722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on cooperative binding of an extended distamycin A analogue in the minor groove of DNA by NMR spectroscopy.
    Yang Y; Chen YH; Pon RT; Lown JW
    Biochem Biophys Res Commun; 1996 May; 222(3):764-9. PubMed ID: 8651919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific alkylation of DNA by duocarmycin A and its novel derivatives bearing PY/IM polyamides.
    Tao ZF; Fujiwara T; Saito I; Sugiyama H
    Nucleosides Nucleotides; 1999; 18(6-7):1615-6. PubMed ID: 10474238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative and qualitative analysis of DNA methylation at N3-adenine by N-methyl-N-nitrosourea.
    Kelly JD; Shah D; Chen FX; Wurdeman R; Gold B
    Chem Res Toxicol; 1998 Dec; 11(12):1481-6. PubMed ID: 9860491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of 1,2,8, 8a-Tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one, the parent alkylation subunit of CC-1065 and the duocarmycins: impact of the alkylation subunit substituents and its implications for DNA alkylation catalysis.
    Boger DL; Santillán A; Searcey M; Brunette SR; Wolkenberg SE; Hedrick MP; Jin Q
    J Org Chem; 2000 Jun; 65(13):4101-11. PubMed ID: 10866627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, DNA sequence preferential alkylation and biological evaluation of N-mustard derivatives of Hoechst 33258 analogues.
    Gupta R; Wang H; Huang L; Lown JW
    Anticancer Drug Des; 1995 Jan; 10(1):25-41. PubMed ID: 7535056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides.
    Lukhtanov EA; Mills AG; Kutyavin IV; Gorn VV; Reed MW; Meyer RB
    Nucleic Acids Res; 1997 Dec; 25(24):5077-84. PubMed ID: 9396819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of base excision repair in the repair of DNA adducts formed by a series of nitrogen mustard-containing analogues of distamycin of increasing binding site size.
    Brooks N; McHugh PJ; Lee M; Hartley JA
    Anticancer Drug Des; 1999 Feb; 14(1):11-8. PubMed ID: 10363024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful selection assay for mixture libraries of DNA alkylating agents.
    Ham YW; Boger DL
    J Am Chem Soc; 2004 Aug; 126(30):9194-5. PubMed ID: 15281804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding affinity and mode of distamycin A with A/T stretches in double-stranded DNA: importance of the terminal A/T residues.
    Asagi M; Toyama A; Takeuchi H
    Biophys Chem; 2010 Jun; 149(1-2):34-9. PubMed ID: 20395035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence selectivity, cross-linking efficiency and cytotoxicity of DNA-targeted 4-anilinoquinoline aniline mustards.
    McClean S; Costelloe C; Denny WA; Searcey M; Wakelin LP
    Anticancer Drug Des; 1999 Jun; 14(3):187-204. PubMed ID: 10500495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modelling of the interaction of carbocyclic analogues of netropsin and distamycin with d(CGCGAATTCGCG)2.
    Bielawski K; Bielawska A; Bartulewicz D; Rózański A
    Acta Biochim Pol; 2000; 47(3):855-66. PubMed ID: 11310985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.