BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 9586031)

  • 1. Use of biotinylated-cysteinyl-tRNA as a non-RI probe in protein synthesis.
    Ohtsuka H; Yokogawa T; Asahara H; Nishikawa K
    Nucleic Acids Symp Ser; 1997; (37):125-6. PubMed ID: 9586031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for coupled transcription and aminoacylation of cysteinyl-tRNA.
    Pavel I; Belcher A; Browning KS
    Anal Biochem; 2004 Dec; 335(2):192-5. PubMed ID: 15556557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing a tRNA core that contributes to aminoacylation.
    Hamann CS; Hou YM
    J Mol Biol; 2000 Jan; 295(4):777-89. PubMed ID: 10656790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
    Lipman RS; Wang J; Sowers KR; Hou YM
    J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteinyl-tRNA deacylation can be uncoupled from protein synthesis.
    David A; Das SR; Gibbs JS; Bennink JR; Yewdell JW
    PLoS One; 2012; 7(3):e33072. PubMed ID: 22427952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative design of a tRNA core for aminoacylation.
    Christian T; Lipman RS; Evilia C; Hou YM
    J Mol Biol; 2000 Nov; 303(4):503-14. PubMed ID: 11054287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonorthogonal tRNA(cys)(Amber) for protein and nascent chain labeling.
    Koubek J; Chen YR; Cheng RP; Huang JJ
    RNA; 2015 Sep; 21(9):1672-82. PubMed ID: 26194135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA recognition based on a pair of tertiary hydrogen interaction.
    Hou YM
    Nucleic Acids Symp Ser; 1995; (33):172-5. PubMed ID: 8643362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking the stereo barrier of amino acid attachment to tRNA by a single nucleotide.
    Shitivelband S; Hou YM
    J Mol Biol; 2005 May; 348(3):513-21. PubMed ID: 15826650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation initiation by using various N-acylaminoacyl tRNAs.
    Goto Y; Ashigai H; Sako Y; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):293-4. PubMed ID: 17150933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and the evolution of aminoacyl-tRNA synthesis.
    Ruan B; Ahel I; Ambrogelly A; Becker HD; Bunjun S; Feng L; Tumbula-Hansen D; Ibba M; Korencic D; Kobayashi H; Jacquin-Becker C; Mejlhede N; Min B; Raczniak G; Rinehart J; Stathopoulos C; Li T; Söll D
    Acta Biochim Pol; 2001; 48(2):313-21. PubMed ID: 11732603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific biosynthetic incorporation of a fluorescent tag into proteins via cysteine-tRNA(Cys).
    Lien L; Ananda P; Seneviratne K; Jaikaran AS; Andrew Woolley G
    Anal Biochem; 2002 Aug; 307(2):252-7. PubMed ID: 12202241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2007 Apr; 14(4):272-9. PubMed ID: 17351629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal labeling of proteins using initiator tRNA.
    Olejnik J; Gite S; Mamaev S; Rothschild KJ
    Methods; 2005 Jul; 36(3):252-60. PubMed ID: 16076451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli tmRNA (10Sa RNA) in trans-translation.
    Himeno H; Nameki N; Tadaki T; Sato M; Hanawa K; Fukushima M; Ishii M; Ushida C; Muto A
    Nucleic Acids Symp Ser; 1997; (37):185-6. PubMed ID: 9586061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.
    Konevega AL; Fischer N; Semenkov YP; Stark H; Wintermeyer W; Rodnina MV
    Nat Struct Mol Biol; 2007 Apr; 14(4):318-24. PubMed ID: 17369838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.