These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 9586116)
21. Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo. Weygand-Durasević I; Ban N; Jahn D; Söll D Eur J Biochem; 1993 Jun; 214(3):869-77. PubMed ID: 7686490 [TBL] [Abstract][Full Text] [Related]
22. An aminoacyl-tRNA synthetase with a defunct editing site. Lue SW; Kelley SO Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544 [TBL] [Abstract][Full Text] [Related]
23. Reinvestigation of phosphorylation of tRNA in Escherichia coli. Mizutani T; Kurata H Nucleic Acids Symp Ser; 1990; (22):87-8. PubMed ID: 1714576 [TBL] [Abstract][Full Text] [Related]
24. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
25. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. Lesjak S; Weygand-Durasevic I FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487 [TBL] [Abstract][Full Text] [Related]
26. Efficient expression of the alpha-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA(5)(Leu). Dobrindt U; Emödy L; Gentschev I; Goebel W; Hacker J Mol Genet Genomics; 2002 May; 267(3):370-9. PubMed ID: 12073039 [TBL] [Abstract][Full Text] [Related]
27. Rye nuclease I as a tool for structural studies of tRNAs with large variable arms. el Adlouni C; Keith G; Dirheimer G; Szarkowski JW; Przykorska A Nucleic Acids Res; 1993 Feb; 21(4):941-7. PubMed ID: 8383845 [TBL] [Abstract][Full Text] [Related]
28. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519 [TBL] [Abstract][Full Text] [Related]
29. Substrate recognition by a yeast 2'-phosphotransferase involved in tRNA splicing and by its Escherichia coli homolog. Steiger MA; Kierzek R; Turner DH; Phizicky EM Biochemistry; 2001 Nov; 40(46):14098-105. PubMed ID: 11705403 [TBL] [Abstract][Full Text] [Related]
30. Presence and coding properties of 2'-O-methyl-5-carbamoylmethyluridine (ncm5Um) in the wobble position of the anticodon of tRNA(Leu) (U*AA) from brewer's yeast. Glasser AL; el Adlouni C; Keith G; Sochacka E; Malkiewicz A; Santos M; Tuite MF; Desgrès J FEBS Lett; 1992 Dec; 314(3):381-5. PubMed ID: 1468572 [TBL] [Abstract][Full Text] [Related]
31. Modified nucleosides in the first positions of the anticodons of tRNA(Leu)4 and tRNA(Leu)5 from Escherichia coli. Horie N; Yamaizumi Z; Kuchino Y; Takai K; Goldman E; Miyazawa T; Nishimura S; Yokoyama S Biochemistry; 1999 Jan; 38(1):207-17. PubMed ID: 9890900 [TBL] [Abstract][Full Text] [Related]
32. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
33. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Normanly J; Ollick T; Abelson J Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5680-4. PubMed ID: 1608979 [TBL] [Abstract][Full Text] [Related]
34. Enzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases. Zhao MW; Hao R; Chen JF; Martin F; Eriani G; Wang ED Biochemistry; 2003 Jul; 42(25):7694-700. PubMed ID: 12820878 [TBL] [Abstract][Full Text] [Related]
35. Synthetase recognition determinants of E. coli valine transfer RNA. Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013 [TBL] [Abstract][Full Text] [Related]
36. Probing a tRNA core that contributes to aminoacylation. Hamann CS; Hou YM J Mol Biol; 2000 Jan; 295(4):777-89. PubMed ID: 10656790 [TBL] [Abstract][Full Text] [Related]
37. Improvement of reading frame maintenance is a common function for several tRNA modifications. Urbonavicius J; Qian Q; Durand JM; Hagervall TG; Björk GR EMBO J; 2001 Sep; 20(17):4863-73. PubMed ID: 11532950 [TBL] [Abstract][Full Text] [Related]
38. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. Ryckelynck M; Masquida B; Giegé R; Frugier M J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416 [TBL] [Abstract][Full Text] [Related]
39. Yeast serine isoacceptor tRNAs: variations of their content as a function of growth conditions and primary structure of the minor tRNA(Ser)GCU. Heyman T; Agoutin B; Fix C; Dirheimer G; Keith G FEBS Lett; 1994 Jun; 347(2-3):143-6. PubMed ID: 8033992 [TBL] [Abstract][Full Text] [Related]
40. Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase. Sohm B; Sissler M; Park H; King MP; Florentz C J Mol Biol; 2004 May; 339(1):17-29. PubMed ID: 15123417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]