BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9586781)

  • 1. Regulation of intracellular metabolism by biodegradable polyrotaxanes.
    Ooya T; Kumeno T; Yui N
    J Biomater Sci Polym Ed; 1998; 9(4):313-26. PubMed ID: 9586781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of biodegradable polyrotaxanes on platelet activation.
    Yui N; Ooya T; Kumeno T
    Bioconjug Chem; 1998; 9(1):118-25. PubMed ID: 9460554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier.
    Ooya T; Yui N
    J Biomater Sci Polym Ed; 1997; 8(6):437-55. PubMed ID: 9151192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis.
    Watanabe J; Ooya T; Yui N
    J Biomater Sci Polym Ed; 1999; 10(12):1275-88. PubMed ID: 10673022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspending Polyrotaxane Dissociation via Photo-Reversible Capping of Terminals.
    Arisaka Y; Yui N
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900323. PubMed ID: 31429992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic calcium level and membrane fluidity of platelets contacting poly(acrylamide-co-methacrylic acid) particles with different surface properties.
    Yui N; Suzuki K; Okano T; Sakurai Y; Nakano M; Ishikawa C; Fujimoto K; Kawaguchi H
    J Biomater Sci Polym Ed; 1995; 7(3):253-64. PubMed ID: 7577828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of cytoplasmic calcium changes in platelets in contact with polystyrene and poly(acrylamide-co-methacrylic acid) surfaces.
    Yui N; Suzuki K; Okano T; Sakurai Y; Ishikawa C; Fujimoto K; Kawaguchi H
    J Biomater Sci Polym Ed; 1993; 4(3):199-215. PubMed ID: 8476791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials.
    Park HD; Lee WK; Ooya T; Park KD; Kim YH; Yui N
    J Biomed Mater Res; 2002 Apr; 60(1):186-90. PubMed ID: 11835174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the supramolecular structure of aminated polyrotaxanes toward enhanced cellular internalization.
    Yokoyama N; Seo JH; Tamura A; Sasaki Y; Yui N
    Macromol Biosci; 2014 Mar; 14(3):359-68. PubMed ID: 24634263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and pH-triggered dethreading of alpha-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps.
    Loethen S; Ooya T; Choi HS; Yui N; Thompson DH
    Biomacromolecules; 2006 Sep; 7(9):2501-6. PubMed ID: 16961310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic Polyrotaxanes as a Feasible Framework for the Intracellular Delivery and Sustainable Activity of Anionic Enzymes: A Comparison Study with Methacrylate-Based Polycations.
    Tamura A; Ikeda G; Nishida K; Yui N
    Macromol Biosci; 2015 Aug; 15(8):1134-45. PubMed ID: 25923376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic polyrotaxanes effectively inhibit uptake via carnitine/organic cationic transporters without cytotoxicity.
    Utsunomiya H; Katoono R; Yui N; Sugiura T; Kubo Y; Kato Y; Tsuji A
    Macromol Biosci; 2008 Jul; 8(7):665-9. PubMed ID: 18366149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.
    Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H
    J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic calcium levels and membrane fluidity of platelets in contact with polyether-polyamide multiblock-copolymer surfaces.
    Yui N; Okano T; Sakurai Y; Kora S; Ishikawa K; Hiranuma T; Yamashita S
    Artif Organs; 1996 Feb; 20(2):103-8. PubMed ID: 8712951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of polyrotaxanes as supramolecular conjugates for cells and tissues.
    Yui N; Ooya T
    J Artif Organs; 2004; 7(2):62-8. PubMed ID: 15309672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes.
    Collins CJ; Mondjinou Y; Loren B; Torregrosa-Allen S; Simmons CJ; Elzey BD; Ayat N; Lu ZR; Thompson D
    Biomacromolecules; 2016 Sep; 17(9):2777-86. PubMed ID: 27387820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence polarization study on the increase of membrane fluidity of human erythrocyte ghosts induced by synthetic water-soluble polymers.
    Ohno H; Shimidzu N; Tsuchida E; Sasakawa S; Honda K
    Biochim Biophys Acta; 1981 Dec; 649(2):221-8. PubMed ID: 7317393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic supramolecules consisting of oligoethylenimine-grafted alpha-cyclodextrins threaded on poly(ethylene oxide) for gene delivery.
    Yang C; Li H; Wang X; Li J
    J Biomed Mater Res A; 2009 Apr; 89(1):13-23. PubMed ID: 18404715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.