These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 9586806)
21. Photoinduced protein modifications by methylene blue and naproxen. Bracchitta G; Catalfo A; De Guidi G Photochem Photobiol Sci; 2012 Dec; 11(12):1886-96. PubMed ID: 22930354 [TBL] [Abstract][Full Text] [Related]
22. Photo-induced riboflavin binding to the tryptophan residues of bovine and human serum albumins. Tapia G; Silva E Radiat Environ Biophys; 1991; 30(2):131-8. PubMed ID: 1857762 [TBL] [Abstract][Full Text] [Related]
23. Effect of solvent viscosity, polarity and pH on the charge transfer between tryptophan radical and tyrosine in bovine serum albumin: a pulse radiolysis study. Joshi R; Mukherjee T Biophys Chem; 2003 Jan; 103(1):89-98. PubMed ID: 12504257 [TBL] [Abstract][Full Text] [Related]
24. Experimental evidence of the reciprocal oxidation of Bovine Serum Albumin and Linoleate in aqueous solution, initiated by HO* free radicals. Collin F; Hindo J; Thérond P; Couturier M; Cosson C; Jore D; Gardès-Albert M Biochimie; 2010 Sep; 92(9):1130-7. PubMed ID: 20685376 [TBL] [Abstract][Full Text] [Related]
25. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Gracanin M; Hawkins CL; Pattison DI; Davies MJ Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501 [TBL] [Abstract][Full Text] [Related]
26. Conformational changes induced in bovine serum albumin by the photodynamic action of haematoporphyrin. Timmins GS; Davies MJ J Photochem Photobiol B; 1994 Jul; 24(2):117-22. PubMed ID: 7931850 [TBL] [Abstract][Full Text] [Related]
27. Oxidative damage of bovine serum albumin and other enzyme proteins by iron-chelate complexes. Ogino T; Okada S Biochim Biophys Acta; 1995 Dec; 1245(3):359-65. PubMed ID: 8541312 [TBL] [Abstract][Full Text] [Related]
28. Tb(III) as a fluorescent probe for the structure of bovine serum albumin. Jin YJ; Li WL; Wang QR Biochem Biophys Res Commun; 1991 May; 177(1):474-9. PubMed ID: 1904219 [TBL] [Abstract][Full Text] [Related]
29. Myoglobin-induced oxidative damage: evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants. Irwin JA; Ostdal H; Davies MJ Arch Biochem Biophys; 1999 Feb; 362(1):94-104. PubMed ID: 9917333 [TBL] [Abstract][Full Text] [Related]
30. π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides. Roveri OA; Braslavsky SE Photochem Photobiol Sci; 2012 Jun; 11(6):962-6. PubMed ID: 22273601 [TBL] [Abstract][Full Text] [Related]
31. Protein damage by photoproducts of merocyanine 540. Pervaiz S; Harriman A; Gulliya KS Free Radic Biol Med; 1992; 12(5):389-96. PubMed ID: 1317327 [TBL] [Abstract][Full Text] [Related]
32. Glucose and free radicals impair the antioxidant properties of serum albumin. Bourdon E; Loreau N; Blache D FASEB J; 1999 Feb; 13(2):233-44. PubMed ID: 9973311 [TBL] [Abstract][Full Text] [Related]
33. Identification of oxidation products and free radicals of tryptophan by mass spectrometry. Domingues MR; Domingues P; Reis A; Fonseca C; Amado FM; Ferrer-Correia AJ J Am Soc Mass Spectrom; 2003 Apr; 14(4):406-16. PubMed ID: 12686488 [TBL] [Abstract][Full Text] [Related]
34. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products. Carroll L; Pattison DI; Davies JB; Anderson RF; Lopez-Alarcon C; Davies MJ Free Radic Biol Med; 2018 Apr; 118():126-136. PubMed ID: 29496618 [TBL] [Abstract][Full Text] [Related]
35. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex. Vallelian F; Garcia-Rubio I; Puglia M; Kahraman A; Deuel JW; Engelsberger WR; Mason RP; Buehler PW; Schaer DJ Free Radic Biol Med; 2015 Aug; 85():259-68. PubMed ID: 25933590 [TBL] [Abstract][Full Text] [Related]
36. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH. Suzukida M; Le HP; Shahid F; McPherson RA; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2415-20. PubMed ID: 6860637 [TBL] [Abstract][Full Text] [Related]
37. Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosation. Fernandes DC; Medinas DB; Alves MJ; Augusto O Free Radic Biol Med; 2005 Jan; 38(2):189-200. PubMed ID: 15607902 [TBL] [Abstract][Full Text] [Related]
38. Interaction of chlorin p6 with bovine serum albumin and photodynamic oxidation of protein. Bose B; Dube A J Photochem Photobiol B; 2006 Oct; 85(1):49-55. PubMed ID: 16762562 [TBL] [Abstract][Full Text] [Related]
39. Role of tryptophan oxidation in peroxynitrite-dependent protein chemiluminescence. Pollet E; Martínez JA; Metha B; Watts BP; Turrens JF Arch Biochem Biophys; 1998 Jan; 349(1):74-80. PubMed ID: 9439584 [TBL] [Abstract][Full Text] [Related]
40. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Aneja B; Kumari M; Azam A; Kumar A; Abid M; Patel R Luminescence; 2018 May; 33(3):464-474. PubMed ID: 29314579 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]