BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9587354)

  • 1. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo.
    van der Laan L; Coremans A; Ince C; Bruining HA
    J Surg Res; 1998 Feb; 74(2):155-60. PubMed ID: 9587354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord.
    Simonovich M; Barbiro-Michaely E; Mayevsky A
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2495-502. PubMed ID: 18978589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle.
    Nioka S; McCully K; McClellan G; Park J; Chance B
    Adv Exp Med Biol; 2003; 510():267-72. PubMed ID: 12580439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution intravital NADH fluorescence microscopy allows measurements of tissue bioenergetics in rat ileal mucosa.
    Rose J; Martin C; MacDonald T; Ellis C
    Microcirculation; 2006 Jan; 13(1):41-7. PubMed ID: 16393945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart.
    Coremans JM; Ince C; Bruining HA; Puppels GJ
    Biophys J; 1997 Apr; 72(4):1849-60. PubMed ID: 9083689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an in vitro model for study of the efficacy of ischemic preconditioning in human skeletal muscle against ischemia-reperfusion injury.
    Martou G; O'Blenes CA; Huang N; McAllister SE; Neligan PC; Ashrafpour H; Pang CY; Lipa JE
    J Appl Physiol (1985); 2006 Nov; 101(5):1335-42. PubMed ID: 17043328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence.
    Ince C; van der Sluijs JP; Sinaasappel M; Avontuur JA; Coremans JM; Bruining HA
    Adv Exp Med Biol; 1994; 361():105-10. PubMed ID: 7597932
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in hepatocyte NADH fluorescence during prolonged hypoxia.
    Obi-Tabot ET; Hanrahan LM; Cachecho R; Beer ER; Hopkins SR; Chan JC; Shapiro JM; LaMorte WW
    J Surg Res; 1993 Dec; 55(6):575-80. PubMed ID: 8246489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.
    Zuo L; Clanton TL
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C207-16. PubMed ID: 15788484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.
    Welsh FA; Vannucci RC; Brierley JB
    J Cereb Blood Flow Metab; 1982; 2(2):221-8. PubMed ID: 7076734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise.
    Katz A; Sahlin K
    Acta Physiol Scand; 1987 Sep; 131(1):119-27. PubMed ID: 3673605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local hypothermia during early reperfusion protects skeletal muscle from ischemia-reperfusion injury.
    Mowlavi A; Neumeister MW; Wilhelmi BJ; Song YH; Suchy H; Russell RC
    Plast Reconstr Surg; 2003 Jan; 111(1):242-50. PubMed ID: 12496585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury.
    Luger-Hamer M; Barbiro-Michaely E; Sonn J; Mayevsky A
    Nephron Clin Pract; 2009; 111(1):c29-38. PubMed ID: 19052468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiorespiratory, tissue oxygen and hepatic NADH responses to graded hypoxia.
    Stidwill RP; Rosser DM; Singer M
    Intensive Care Med; 1998 Nov; 24(11):1209-16. PubMed ID: 9876985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo NADH and Pd-porphyrin video fluori-/phosphorimetry.
    Ince C; Ashruf JF; Sanderse EA; Pierik EG; Coremans JM; Bruining HA
    Adv Exp Med Biol; 1992; 317():267-75. PubMed ID: 1288133
    [No Abstract]   [Full Text] [Related]  

  • 19. Optical spectroscopic imaging for non-invasive evaluation of tissue oxygenation.
    Bruining HA; Pierik GJ; Ince C; Ashruf F
    Chirurgie; 1992; 118(5):317-22; discussion 323. PubMed ID: 1341287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia.
    Serebrovskaya TV; Nosar VI; Bratus LV; Gavenauskas BL; Mankovska IM
    High Alt Med Biol; 2013 Sep; 14(3):280-8. PubMed ID: 24028642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.