BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 9587412)

  • 1. Changes in the hepatic mitochondrial respiratory system in the transition from weaning to adulthood in rats.
    Lionetti L; Iossa S; Liverini G; Brand MD
    Arch Biochem Biophys; 1998 Apr; 352(2):240-6. PubMed ID: 9587412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?
    Borutaite V; Mildaziene V; Brown GC; Brand MD
    Biochim Biophys Acta; 1995 Dec; 1272(3):154-8. PubMed ID: 8541346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.
    Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P
    Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes.
    Nobes CD; Brown GC; Olive PN; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12903-9. PubMed ID: 2376579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver.
    Ciapaite J; Nauciene Z; Baniene R; Wagner MJ; Krab K; Mildaziene V
    FEBS J; 2009 Jul; 276(13):3656-68. PubMed ID: 19496816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat liver mitochondrial respiratory capacities in the transition from weaning to adulthood.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Mech Ageing Dev; 1998 Jan; 100(1):59-66. PubMed ID: 9509395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 3,5-di-iodo-L-thyronine on the mitochondrial energy-transduction apparatus.
    Lombardi A; Lanni A; Moreno M; Brand MD; Goglia F
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):521-6. PubMed ID: 9461551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of a new 2-styrylchromone with mitochondrial oxidative phosphorylation.
    Peixoto F; Barros AI; Silva AM
    J Biochem Mol Toxicol; 2002; 16(5):220-6. PubMed ID: 12439863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia.
    Harrison DK; Fasching M; Fontana-Ayoub M; Gnaiger E
    J Appl Physiol (1985); 2015 Nov; 119(10):1210-8. PubMed ID: 26251509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Proton Leak in Isolated Mitochondria.
    Affourtit C; Wong HS; Brand MD
    Methods Mol Biol; 2018; 1782():157-170. PubMed ID: 29850999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells.
    Bishop T; St-Pierre J; Brand MD
    Am J Physiol Regul Integr Comp Physiol; 2002 Feb; 282(2):R372-82. PubMed ID: 11792646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain.
    Acharya MM; Katyare SS
    Exp Neurol; 2005 Mar; 192(1):79-88. PubMed ID: 15698621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet.
    Lionetti L; Iossa S; Brand MD; Liverini G
    Mol Cell Biochem; 1996 May; 158(2):133-8. PubMed ID: 8817475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Erroneous use of lipophilic phosphonic cations for determining mitochondrial membrane potential].
    Skul'skiĭ IA; Glazunov VV
    Tsitologiia; 1981 Apr; 23(4):458-60. PubMed ID: 7256848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative phosphorylation by in situ synaptosomal mitochondria from whole brain of young and old rats.
    Joyce OJ; Farmer MK; Tipton KF; Porter RK
    J Neurochem; 2003 Aug; 86(4):1032-41. PubMed ID: 12887700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain.
    Brand MD; Hafner RP; Brown GC
    Biochem J; 1988 Oct; 255(2):535-9. PubMed ID: 2849419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA
    Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.