BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9587656)

  • 1. Energy dependence of protein synthesis by isolated cestode mitochondria.
    Wani JH; Srivastava VM
    Arch Physiol Biochem; 1997 Oct; 105(6):618-21. PubMed ID: 9587656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of ATP on the malate regulation of oxidative phosphorylation in brain mitochondria].
    Samartsev VN
    Ukr Biokhim Zh (1978); 1990; 62(2):104-6. PubMed ID: 2368180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-independent protection of the oxidative phosphorylation capacity of mitochondria against anoxic damage by ATP and its non-metabolizable analogs.
    Watanabe F; Hashimoto T; Tagawa K
    J Biochem; 1985 Apr; 97(4):1229-34. PubMed ID: 4030721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria.
    Swierczyński J; Aleksandrowicz Z; Zelewski L
    Biochem Med Metab Biol; 1987 Oct; 38(2):156-64. PubMed ID: 3675918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro protein synthesis in Hymenolepis diminuta, a rat intestinal cestode.
    Wani JH; Galzie Z; Srivastava VM
    Biochem Mol Biol Int; 1993 Oct; 31(2):365-71. PubMed ID: 8275025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolism of deoxyguanosine in mitochondria: a characterization of the phosphorylation process which occurs in intact mitochondria.
    Watkins LF; Lewis RA
    Biochim Biophys Acta; 1987 Jan; 923(1):103-8. PubMed ID: 3801514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mitochondria concentration and age, energy and inhibitors of mitochondrial anion transport on malate transport in isolated rat heart mitochondria.
    Barritt GJ
    Int J Biochem; 1978; 9(5):317-22. PubMed ID: 566683
    [No Abstract]   [Full Text] [Related]  

  • 10. Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria.
    Zaccagnino P; Corcelli A; Baronio M; Lorusso M
    FEBS Lett; 2011 Jan; 585(2):429-34. PubMed ID: 21187088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fasciolicidal and anti-cestode agents on the respiration of isolated Hymenolepis diminuta mitochondria.
    Yorke RE; Turton JA
    Z Parasitenkd; 1974; 45(1):1-10. PubMed ID: 4454317
    [No Abstract]   [Full Text] [Related]  

  • 12. Coupling of mitochondrial metabolism and protein synthesis in heart mitochondria.
    McKee EE; Grier BL; Thompson GS; Leung AC; McCourt JD
    Am J Physiol; 1990 Mar; 258(3 Pt 1):E503-10. PubMed ID: 2316644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Participation of SH-groups in regulating oxidative phosphorylation by malate and palmitate-uncoupled respiration in liver mitochondria].
    Samartsev VN; Zeldi IP
    Biokhimiia; 1995 Apr; 60(4):635-43. PubMed ID: 7779985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of fatty acids by mitochondria obtained from newborn subcutaneous (white) adipose tissue.
    Novak M; Penn-Walker D; Monkus EF
    Biol Neonate; 1974; 25(1-2):95-107. PubMed ID: 4153620
    [No Abstract]   [Full Text] [Related]  

  • 18. Correlation between the malate dependent progesterone and citrate biosynthesis in the mitochondrial fraction of human term placenta. The stimulatory effect of ADP and ATP.
    Swierczynski J; Klimek J; Zelewski L
    J Steroid Biochem; 1986 Feb; 24(2):591-5. PubMed ID: 3702442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the energy cost of ATP transport and ATP synthesis in mitochondria.
    Duszyński J; Bogucka K; Letko G; Küster U; Kunz W; Wojtczak L
    Biochim Biophys Acta; 1981 Sep; 637(2):217-23. PubMed ID: 7295709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potentiating effect of adenosine diphosphate in the uncoupling of oxidative phosphorylation in potato mitochondria.
    Laties GG
    Biochemistry; 1973 Aug; 12(17):3350-5. PubMed ID: 4732864
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.