These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 9587951)
21. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731 [TBL] [Abstract][Full Text] [Related]
22. Effects of sodium chloride and sodium perchlorate on properties and partition behavior of solutes in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems. da Silva NR; Ferreira LA; Teixeira JA; Uversky VN; Zaslavsky BY J Chromatogr A; 2019 Jan; 1583():28-38. PubMed ID: 30448052 [TBL] [Abstract][Full Text] [Related]
23. Pore sizes in hydrated dextran microspheres. Stenekes RJ; De Smedt SC; Demeester J; Sun G; Zhang Z; Hennink WE Biomacromolecules; 2000; 1(4):696-703. PubMed ID: 11710200 [TBL] [Abstract][Full Text] [Related]
24. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading]. Zheng CL; Liu XQ; Zhu JB; Zhao YN Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577 [TBL] [Abstract][Full Text] [Related]
25. Effects of additives and processing parameters on the initial burst release of protein from poly(lactic-co-glycolic acid) microspheres. Zheng CH; Gao JQ; Liang WQ; Yu HY; Zhang YL PDA J Pharm Sci Technol; 2006; 60(1):54-9. PubMed ID: 17089678 [TBL] [Abstract][Full Text] [Related]
26. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348 [TBL] [Abstract][Full Text] [Related]
27. Preparing polymer-based sustained-release systems without exposing proteins to water-oil or water-air interfaces and cross-linking reagents. Jin T; Zhu J; Wu F; Yuan W; Geng LL; Zhu H J Control Release; 2008 May; 128(1):50-9. PubMed ID: 18417240 [TBL] [Abstract][Full Text] [Related]
28. Preparation of polysaccharide glassy microparticles with stabilization of proteins. Yuan W; Geng Y; Wu F; Liu Y; Guo M; Zhao H; Jin T Int J Pharm; 2009 Jan; 366(1-2):154-9. PubMed ID: 18835346 [TBL] [Abstract][Full Text] [Related]
29. Monosize poly(ethylcyanoacrylate) microspheres: preparation and degradation properties. Tuncel A; Ciçek H; Hayran M; Pişkin E J Biomed Mater Res; 1995 Jun; 29(6):721-8. PubMed ID: 7593009 [TBL] [Abstract][Full Text] [Related]
30. Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation. Kempen DH; Lu L; Zhu X; Kim C; Jabbari E; Dhert WJ; Currier BL; Yaszemski MJ J Biomed Mater Res A; 2004 Aug; 70(2):293-302. PubMed ID: 15227674 [TBL] [Abstract][Full Text] [Related]
31. Preparation of Polyamide-6 Submicrometer-Sized Spheres by In Situ Polymerization. Zhao X; Xia H; Fu X; Duan J; Yang G Macromol Rapid Commun; 2015 Nov; 36(22):1994-9. PubMed ID: 26296303 [TBL] [Abstract][Full Text] [Related]
32. Effect of particle size and charge on the network properties of microsphere-based hydrogels. Van Tomme SR; van Nostrum CF; Dijkstra M; De Smedt SC; Hennink WE Eur J Pharm Biopharm; 2008 Oct; 70(2):522-30. PubMed ID: 18582574 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable Nano-aggregates of Star-Shaped 8-arm PEG-PLLA Block Co-polymers for Encapsulation of Water-Soluble Macromolecules. Nagahama K; Saito T; Ouchi T; Ohya Y J Biomater Sci Polym Ed; 2011; 22(1-3):407-16. PubMed ID: 20836921 [TBL] [Abstract][Full Text] [Related]
34. Patchy surfaces stabilize dextran-polyethylene glycol aqueous two-phase system liquid patterns. Kojima T; Takayama S Langmuir; 2013 May; 29(18):5508-14. PubMed ID: 23581424 [TBL] [Abstract][Full Text] [Related]
35. Factors affecting size and swelling of poly(ethylene glycol) microspheres formed in aqueous sodium sulfate solutions without surfactants. Nichols MD; Scott EA; Elbert DL Biomaterials; 2009 Oct; 30(29):5283-91. PubMed ID: 19615738 [TBL] [Abstract][Full Text] [Related]
36. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Kadota K; Yanagawa Y; Tachikawa T; Deki Y; Uchiyama H; Shirakawa Y; Tozuka Y Int J Pharm; 2019 Jan; 555():280-290. PubMed ID: 30471373 [TBL] [Abstract][Full Text] [Related]
37. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
38. Highly spherical and deformable chitosan microspheres for arterial embolization. Kang MJ; Park JM; Choi WS; Lee J; Kwak BK; Lee J Chem Pharm Bull (Tokyo); 2010 Mar; 58(3):288-92. PubMed ID: 20190430 [TBL] [Abstract][Full Text] [Related]
39. Effective parameters in determining cross-linked dextran microsphere characteristics: screening by Plackett-Burman design-of-experiments. Kenari HS; Alinejad Z; Imani M; Nodehi A J Microencapsul; 2013; 30(6):599-611. PubMed ID: 23534495 [TBL] [Abstract][Full Text] [Related]
40. Layer-by-layer films of polysaccharides modified with polyethylene glycol and dextran. Shutava TG; Livanovich KS; Sharamet AA Colloids Surf B Biointerfaces; 2019 Jan; 173():412-420. PubMed ID: 30321799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]