BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9587999)

  • 1. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.
    Ramnarine KV; Nassiri DK; Hoskins PR; Lubbers J
    Ultrasound Med Biol; 1998 Mar; 24(3):451-9. PubMed ID: 9587999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Scatter Particle and Mixture Fluid for Preparing Blood Mimicking Fluid for Wall-Less Flow Phantom.
    Oglat AA; Matjafri MZ; Suardi N; Abdelrahman MA; Oqlat MA; Oqlat AA
    J Med Ultrasound; 2018; 26(3):134-142. PubMed ID: 30283199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories.
    Teirlinck CJ; Bezemer RA; Kollmann C; Lubbers J; Hoskins PR; Ramnarine KV; Fish P; Fredeldt KE; Schaarschmidt UG
    Ultrasonics; 1998 Feb; 36(1-5):653-60. PubMed ID: 9651595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.
    Ramnarine KV; Hoskins PR; Routh HF; Davidson F
    Ultrasound Med Biol; 1999 Jan; 25(1):105-10. PubMed ID: 10048807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of an ultrasound blood-mimicking fluid for Doppler investigations of turbulence in vitro.
    Thorne ML; Poepping TL; Rankin RN; Steinman DA; Holdsworth DW
    Ultrasound Med Biol; 2008 Jul; 34(7):1163-73. PubMed ID: 18343015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.
    Ramnarine KV; Anderson T; Hoskins PR
    Ultrasound Med Biol; 2001 Feb; 27(2):245-50. PubMed ID: 11316533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a blood mimicking fluid for high intensity focused ultrasound.
    Liu Y; Maruvada S; King RL; Herman BA; Wear KA
    J Acoust Soc Am; 2008 Sep; 124(3):1803-10. PubMed ID: 19045670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Suspension-Scattered Particles Used in Blood-Mimicking Fluid for Doppler Ultrasound Imaging.
    Oglat AA; Suardi N; Matjafri MZ; Oqlat MA; Abdelrahman MA; Oqlat AA
    J Med Ultrasound; 2018; 26(2):68-76. PubMed ID: 30065522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the Doppler spectra from human blood and artificial blood used in a flow phantom.
    Hoskins PR; Loupas T; McDicken WN
    Ultrasound Med Biol; 1990; 16(2):141-7. PubMed ID: 1691560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging.
    Zhou X; Kenwright DA; Wang S; Hossack JA; Hoskins PR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):53-65. PubMed ID: 27925588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model.
    Caine M; McCafferty MS; McGhee S; Garcia P; Mullett WM; Zhang X; Hill M; Dreher MR; Lewis AL
    J Vasc Interv Radiol; 2017 Feb; 28(2):260-268.e2. PubMed ID: 27641675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of flow in numerical and physical models of a ventricular assist device using low- and high-viscosity fluids.
    König CS; Clark C; Mokhtarzadeh-Dehghan MR
    Proc Inst Mech Eng H; 1999; 213(5):423-32. PubMed ID: 10581969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow and frequency dependent viscosity of blood and blood-dextran mixtures.
    Singh M; Scearce RW; Coulter NA
    Microvasc Res; 1974 Mar; 7(2):268-73. PubMed ID: 4274672
    [No Abstract]   [Full Text] [Related]  

  • 16. A computer controlled flow phantom for generation of physiological Doppler waveforms.
    Hoskins PR; Anderson T; McDicken WN
    Phys Med Biol; 1989 Nov; 34(11):1709-17. PubMed ID: 2479955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.
    Yousif MY; Holdsworth DW; Poepping TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1412-5. PubMed ID: 19964526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HEMODYNAMIC EFFECTS OF LOW VISCOSITY DEXTRAN IN SURGICAL SHOCK.
    CAREY JS; SUZUKI F; MLADICK RA; BAKER RJ; SHOEMAKER WC
    Surg Forum; 1964; 15():22-4. PubMed ID: 14189340
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of the Fluid Viscosity in a Mock Circulation.
    Boës S; Ochsner G; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Jan; 42(1):68-77. PubMed ID: 28718516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE VISCOSITY OF WHOLE BLOOD IN TRAUMA.
    BERGENTZ SE; GELIN LE; RUDENSTAM CM; ZEDERFELDT B
    Acta Chir Scand; 1963 Oct; 126():289-93. PubMed ID: 14070600
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.