These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 9588058)

  • 1. [Tricalcium phosphate, vector of antibiotics: gentamycin and vancomycin. In vitro physicochemical characterization, study of biomaterial porosity and gentamycin and vancomycin elution].
    Brouard S; Lelan J; Lancien G; Bonnaure M; Cormier M; Langlais F
    Chirurgie; 1997; 122(7):397-403. PubMed ID: 9588058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Tricalcium phosphate and gentamycin. In vitro and in vivo antibiotic diffusion, rehabilitation in bone site in sheep].
    Prat-Poiret N; Langlais F; Bonnaure M; Cormier M; Lancien G
    Chirurgie; 1996; 121(4):298-308. PubMed ID: 8945817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The physicochemical characteristics and biological profile of calcium phosphate bioceramics].
    Stroffolini FA; Ruggeri B
    Minerva Stomatol; 1993 Sep; 42(9):383-92. PubMed ID: 8309454
    [No Abstract]   [Full Text] [Related]  

  • 4. Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate.
    Gandolfi MG; Siboni F; Primus CM; Prati C
    J Endod; 2014 Oct; 40(10):1632-7. PubMed ID: 25260736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.
    Makarov C; Cohen V; Raz-Pasteur A; Gotman I
    Eur J Pharm Sci; 2014 Oct; 62():49-56. PubMed ID: 24859314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study.
    Guicheux J; Gauthier O; Aguado E; Pilet P; Couillaud S; Jegou D; Daculsi G; Heymann D
    J Bone Miner Res; 1998 Apr; 13(4):739-48. PubMed ID: 9556073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site].
    Grizon F; Filmon R; Chappard D; Rebel A; Basle MF
    Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antibiotic release by tricalcic phosphate bone implantation. In vitro and in vivo pharmacokinetics of different galenic forms].
    Thomazeau H; Langlais F
    Chirurgie; 1997 Jan; 121(9-10):663-6. PubMed ID: 9138328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized beta-tricalcium phosphate and agarose scaffold fabrication technique.
    Román J; Cabañas MV; Peña J; Doadrio JC; Vallet-Regí M
    J Biomed Mater Res A; 2008 Jan; 84(1):99-107. PubMed ID: 17600331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local antibiotic delivery with OsteoSet, DBX, and Collagraft.
    Heijink A; Yaszemski MJ; Patel R; Rouse MS; Lewallen DG; Hanssen AD
    Clin Orthop Relat Res; 2006 Oct; 451():29-33. PubMed ID: 16906070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds.
    Zhou J; Fang T; Wang Y; Dong J
    J Biomed Mater Res A; 2012 Sep; 100(9):2295-301. PubMed ID: 22499502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics.
    De Groot K
    Ann N Y Acad Sci; 1988; 523():227-33. PubMed ID: 3382123
    [No Abstract]   [Full Text] [Related]  

  • 13. New bone formation in the in vivo implantation of bioceramics. A quantitative analysis.
    Wu H; Zhu TB; Du JY; Hong GX; Sun SZ; Xu XH
    Chin Med J (Engl); 1992 Sep; 105(9):753-7. PubMed ID: 1288979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system.
    Bohner M; Lemaître J; Van Landuyt P; Zambelli PY; Merkle HP; Gander B
    J Pharm Sci; 1997 May; 86(5):565-72. PubMed ID: 9145380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring vancomycin release from beta-TCP/agarose scaffolds.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    Eur J Pharm Sci; 2009 Jun; 37(3-4):249-56. PubMed ID: 19491012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro elution characteristics of vancomycin from calcium phosphate-calcium sulfate beads.
    Scharer BM; Sanicola SM
    J Foot Ankle Surg; 2009; 48(5):540-2. PubMed ID: 19700115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of antibiotics release from ceramic implants.
    Lewandowski R; Grzybowski J; Karaś J; Jaegerman Z; Polesiński Z
    Polim Med; 2003; 33(3):3-11. PubMed ID: 14696519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle.
    Miño-Fariña N; Muñoz-Guzón F; López-Peña M; Ginebra MP; Del Valle-Fresno S; Ayala D; González-Cantalapiedra A
    Vet J; 2009 Feb; 179(2):264-72. PubMed ID: 17980634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.