These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Extraneuronal monoamine transporter expression and DNA repair vis-à-vis 2-chloroethyl-3-sarcosinamide-1-nitrosourea cytotoxicity in human tumor cell lines. Chen ZP; Remack J; Brent TP; Mohr G; Panasci LC Clin Cancer Res; 1999 Dec; 5(12):4186-90. PubMed ID: 10632359 [TBL] [Abstract][Full Text] [Related]
3. Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Chen ZP; Malapetsa A; McQuillan A; Marcantonio D; Bello V; Mohr G; Remack J; Brent TP; Panasci LC Mol Pharmacol; 1997 Nov; 52(5):815-20. PubMed ID: 9351972 [TBL] [Abstract][Full Text] [Related]
4. Correlation of chloroethylnitrosourea resistance with ERCC-2 expression in human tumor cell lines as determined by quantitative competitive polymerase chain reaction. Chen ZP; Malapetsa A; Marcantonio D; Mohr G; Brien S; Panasci LC Cancer Res; 1996 Jun; 56(11):2475-8. PubMed ID: 8653679 [TBL] [Abstract][Full Text] [Related]
5. Single nucleotide polymorphisms and expression of ERCC1 and ERCC2 vis-à-vis chemotherapy drug cytotoxicity in human glioma. Chen H; Shao C; Shi H; Mu Y; Sai K; Chen Z J Neurooncol; 2007 May; 82(3):257-62. PubMed ID: 17151930 [TBL] [Abstract][Full Text] [Related]
6. [Expression of extraneuronal monoamine transporter gene and DNA repair gene vis-à-vis with antitumor efficacy of SarCNU in human tumor xenografts]. Chen Z; Panasci LC; Carter CA Zhonghua Zhong Liu Za Zhi; 2001 Mar; 23(2):122-4. PubMed ID: 11783015 [TBL] [Abstract][Full Text] [Related]
7. Associations between ERCC2 polymorphisms and gliomas. Caggana M; Kilgallen J; Conroy JM; Wiencke JK; Kelsey KT; Miike R; Chen P; Wrensch MR Cancer Epidemiol Biomarkers Prev; 2001 Apr; 10(4):355-60. PubMed ID: 11319176 [TBL] [Abstract][Full Text] [Related]
8. Enhancing alkylating agent resistance through ERCC2 gene transfection in human glioma cell line. Chen Z; Zhang J; Mohr G Chin Med J (Engl); 2003 Aug; 116(8):1171-4. PubMed ID: 12935404 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of resistance to (2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) in sensitive and resistant human glioma cells. Skalski V; Yarosh DB; Batist G; Gros P; Feindel W; Kopriva D; Panasci LC Mol Pharmacol; 1990 Sep; 38(3):299-305. PubMed ID: 2402223 [TBL] [Abstract][Full Text] [Related]
10. Quantitation of ERCC-2 gene expression in human tumor cell lines by reverse transcription-polymerase chain reaction in comparison to northern blot analysis. Chen ZP; Malapetsa A; Mohr G; Brien S; Panasci LC Anal Biochem; 1997 Jan; 244(1):50-4. PubMed ID: 9025907 [TBL] [Abstract][Full Text] [Related]
11. Genomic copy number changes of DNA repair genes ERCC1 and ERCC2 in human gliomas. Liang BC; Ross DA; Reed E J Neurooncol; 1995 Oct; 26(1):17-23. PubMed ID: 8583241 [TBL] [Abstract][Full Text] [Related]
12. Enhanced DNA excision repair in CCRF-CEM cells resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea, quantitated using the single cell gel electrophoresis (Comet) assay. Yamauchi T; Kawai Y; Ueda T Biochem Pharmacol; 2003 Sep; 66(6):939-46. PubMed ID: 12963480 [TBL] [Abstract][Full Text] [Related]
13. [Effect of pretreatment with N-methyl-N-nitrosourea or streptozotocin on the cytotoxicity and the induction of sister chromatid exchanges in human and rodent brain tumor cells treated with chloroethylnitrosourea]. Tokuda K Hokkaido Igaku Zasshi; 1992 Jul; 67(4):462-74. PubMed ID: 1427592 [TBL] [Abstract][Full Text] [Related]
14. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. Liang BC J Neurooncol; 1996 Aug; 29(2):149-55. PubMed ID: 8858520 [TBL] [Abstract][Full Text] [Related]
15. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes. Lamerdin JE; Stilwagen SA; Ramirez MH; Stubbs L; Carrano AV Genomics; 1996 Jun; 34(3):399-409. PubMed ID: 8786141 [TBL] [Abstract][Full Text] [Related]
16. [Mechanisms of cellular resistance to chloroethylnitrosourea in cell lines derived from human brain tumors]. Aida T Hokkaido Igaku Zasshi; 1988 May; 63(3):348-61. PubMed ID: 3164699 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide excision repair protein levels vis-à-vis anticancer drug resistance in 60 human tumor cell lines. Chen ZP; Malapetsa A; Monks A; Myers TG; Mohr G; Sausville EA; Scudiero DA; Panasci LC Ai Zheng; 2002 Mar; 21(3):233-9. PubMed ID: 12451985 [TBL] [Abstract][Full Text] [Related]
18. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Shou J; Ali-Osman F; Multani AS; Pathak S; Fedi P; Srivenugopal KS Oncogene; 2002 Jan; 21(6):878-89. PubMed ID: 11840333 [TBL] [Abstract][Full Text] [Related]
19. Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Batista LF; Roos WP; Christmann M; Menck CF; Kaina B Cancer Res; 2007 Dec; 67(24):11886-95. PubMed ID: 18089819 [TBL] [Abstract][Full Text] [Related]
20. Altered cytotoxicity of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea in human glioma cell lines SK-MG-1 and SKI-1 correlates with differential transport kinetics. Noë AJ; Malapetsa A; Panasci LC Cancer Res; 1994 Mar; 54(6):1491-6. PubMed ID: 8137253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]