BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9588689)

  • 1. Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray.
    Manning BH; Franklin KB
    Behav Brain Res; 1998 Apr; 92(1):97-102. PubMed ID: 9588689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats.
    Pavlovic ZW; Cooper ML; Bodnar RJ
    Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (+)-Morphine and (-)-morphine stereoselectively attenuate the (-)-morphine-produced tail-flick inhibition via the naloxone-sensitive sigma receptor in the ventral periaqueductal gray of the rat.
    Terashvili M; Wu HE; Moore RM; Harder DR; Tseng LF
    Eur J Pharmacol; 2007 Sep; 571(1):1-7. PubMed ID: 17597599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray.
    Taylor BK; Basbaum AI
    J Neurochem; 2003 Sep; 86(5):1129-41. PubMed ID: 12911621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites.
    Olmstead MC; Franklin KB
    Behav Neurosci; 1997 Dec; 111(6):1324-34. PubMed ID: 9438801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of microinjection of morphine into thalamic nucleus submedius on formalin-evoked nociceptive responses of neurons in the rat spinal dorsal horn.
    Zhao M; Li Q; Tang JS
    Neurosci Lett; 2006 Jun; 401(1-2):103-7. PubMed ID: 16556485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphine analgesia in the formalin test: evidence for forebrain and midbrain sites of action.
    Manning BH; Morgan MJ; Franklin KB
    Neuroscience; 1994 Nov; 63(1):289-94. PubMed ID: 7898653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats.
    Shannon HE; Lutz EA
    Neuropharmacology; 2002 Feb; 42(2):253-61. PubMed ID: 11804622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.
    Yousofizadeh S; Tamaddonfard E; Farshid AA
    Eur J Pharmacol; 2015 Jul; 758():147-52. PubMed ID: 25864612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats.
    Tortorici V; Nogueira L; Salas R; Vanegas H
    Pain; 2003 Mar; 102(1-2):9-16. PubMed ID: 12620592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ventral tegmental area, periaqueductal gray and parabrachial nucleus in the discriminative stimulus effects of morphine in the rat.
    Krivsky JA; Stoffel EC; Sumner JE; Inman BC; Craft RM
    Behav Pharmacol; 2006 May; 17(3):259-70. PubMed ID: 16572004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception.
    Ma QP; Shi YS; Han JS
    Brain Res; 1992 Jun; 583(1-2):292-5. PubMed ID: 1504835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of opioid tolerance by lysine-acetylsalicylate in rats.
    Pernia-Andrade AJ; Tortorici V; Vanegas H
    Pain; 2004 Sep; 111(1-2):191-200. PubMed ID: 15327823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the sites at which pentazocine and morphine act to produce analgesia.
    Llewelyn MB; Azami J; Gibbs M; Roberts MHT
    Pain; 1983 Aug; 16(4):313-331. PubMed ID: 6622044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphine microinjections into the rat nucleus submedius depress nociceptive behavior in the formalin test.
    Yang ZJ; Tang JS; Jia H
    Neurosci Lett; 2002 Aug; 328(2):141-4. PubMed ID: 12133575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats.
    Pavlovic ZW; Bodnar RJ
    Brain Res; 1998 Jan; 779(1-2):158-69. PubMed ID: 9473650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of intrathecal morphine-induced immunosuppression by microinjection of naloxone into periaqueductal gray.
    Zhang Y; Du LN; Wu GC; Cao XD
    Zhongguo Yao Li Xue Bao; 1998 Nov; 19(6):519-22. PubMed ID: 10437136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to repeated microinjection of morphine into the periaqueductal gray is associated with changes in the behavior of off- and on-cells in the rostral ventromedial medulla of rats.
    Tortorici V; Morgan MM; Vanegas H
    Pain; 2001 Jan; 89(2-3):237-44. PubMed ID: 11166480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (+)-Morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat.
    Terashvili M; Wu HE; Schwasinger ET; Hung KC; Hong JS; Tseng LF
    Eur J Pharmacol; 2008 Jun; 587(1-3):147-54. PubMed ID: 18448094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naloxone blocks opioid peptide release in N. accumbens and amygdala elicited by morphine injected into periaqueductal gray.
    Ma QP; Shi YS; Han JS
    Brain Res Bull; 1992 Feb; 28(2):351-4. PubMed ID: 1596757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.