BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 9588880)

  • 1. Activated keratinocytes in the epidermis of hypertrophic scars.
    Machesney M; Tidman N; Waseem A; Kirby L; Leigh I
    Am J Pathol; 1998 May; 152(5):1133-41. PubMed ID: 9588880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertrophic scarring is associated with epidermal abnormalities: an immunohistochemical study.
    Andriessen MP; Niessen FB; Van de Kerkhof PC; Schalkwijk J
    J Pathol; 1998 Oct; 186(2):192-200. PubMed ID: 9924436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-beta(1), -beta(2), -beta(3), basic fibroblast growth factor and vascular endothelial growth factor expression in keratinocytes of burn scars.
    Hakvoort T; Altun V; van Zuijlen PP; de Boer WI; van Schadewij WA; van der Kwast TH
    Eur Cytokine Netw; 2000 Jun; 11(2):233-39. PubMed ID: 10903802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A study of the abnormalities of human epiderm in keloids and hypertrophic scars].
    He XJ; Han CM; Peng JP
    Zhonghua Wai Ke Za Zhi; 2004 Jul; 42(14):845-8. PubMed ID: 15363271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars.
    Bellemare J; Roberge CJ; Bergeron D; Lopez-Vallé CA; Roy M; Moulin VJ
    J Pathol; 2005 May; 206(1):1-8. PubMed ID: 15772942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered expression of keratins during abnormal wound healing in human skin.
    Prathiba V; Rao KS; Gupta PD
    Cytobios; 2001; 104(405):43-51. PubMed ID: 11219730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars.
    Niessen FB; Andriessen MP; Schalkwijk J; Visser L; Timens W
    J Pathol; 2001 Jun; 194(2):207-16. PubMed ID: 11400150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of PDGF-B in TCA-treated epidermal keratinocytes.
    Yonei N; Kanazawa N; Ohtani T; Furukawa F; Yamamoto Y
    Arch Dermatol Res; 2007 Nov; 299(9):433-40. PubMed ID: 17724602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of prothrombin, thrombin and its receptors in human scars.
    Artuc M; Hermes B; Algermissen B; Henz BM
    Exp Dermatol; 2006 Jul; 15(7):523-9. PubMed ID: 16761961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype.
    Yang S; Sun Y; Geng Z; Ma K; Sun X; Fu X
    Int J Mol Med; 2016 May; 37(5):1263-73. PubMed ID: 26986690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of epidermal growth factor receptor and related phosphorylation proteins in hypertrophic scars and normal skin.
    Cheng B; Fu X; Sun T; Sun X; Sheng Z
    Chin Med J (Engl); 2002 Oct; 115(10):1525-8. PubMed ID: 12490102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wound keratins in the regenerating epidermis of lizard suggest that the wound reaction is similar in the tail and limb.
    Alibardi L; Toni M
    J Exp Zool A Comp Exp Biol; 2005 Oct; 303(10):845-60. PubMed ID: 16161012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recessive dystrophic epidermolysis bullosa skin displays a chronic growth-activated immunophenotype. Implications for carcinogenesis.
    Smoller BA; McNutt NS; Carter DM; Gottlieb AB; Hsu A; Krueger J
    Arch Dermatol; 1990 Jan; 126(1):78-83. PubMed ID: 1688702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-like growth factor binding protein-3 (IGFBP-3) localizes to and modulates proliferative epidermal keratinocytes in vivo.
    Edmondson SR; Thumiger SP; Kaur P; Loh B; Koelmeyer R; Li A; Silha JV; Murphy LJ; Wraight CJ; Werther GA
    Br J Dermatol; 2005 Feb; 152(2):225-30. PubMed ID: 15727632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars.
    Bock O; Yu H; Zitron S; Bayat A; Ferguson MW; Mrowietz U
    Acta Derm Venereol; 2005; 85(3):216-20. PubMed ID: 16040405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Activated" keratinocyte phenotype is unifying feature in conditions which predispose to squamous cell carcinoma of the skin.
    Smoller BR; Krueger J; McNutt NS; Hsu A
    Mod Pathol; 1990 Mar; 3(2):171-5. PubMed ID: 1691494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Propionibacterium acnes on various mRNA expression levels in normal human epidermal keratinocytes in vitro.
    Akaza N; Akamatsu H; Kishi M; Mizutani H; Ishii I; Nakata S; Matsunaga K
    J Dermatol; 2009 Apr; 36(4):213-23. PubMed ID: 19348660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and distribution characteristics of sweat glands in hypertrophic scar and their possible effects on sweat gland regeneration.
    Fu XB; Sun TZ; Li XK; Sheng ZY
    Chin Med J (Engl); 2005 Feb; 118(3):186-91. PubMed ID: 15740645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of Langerhans cells in normal and pathological human scars. II. Hypertrophic scars.
    Cracco C; Stella M; Teich Alasia S; Filogamo G
    Eur J Histochem; 1992; 36(1):53-65. PubMed ID: 1374665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the epidermis in the control of scarring: evidence for mechanism of action for silicone gel.
    Tandara AA; Mustoe TA
    J Plast Reconstr Aesthet Surg; 2008 Oct; 61(10):1219-25. PubMed ID: 18653391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.