These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 9589049)

  • 41. Using the automated DNA sequencer.
    Du Z; Wilson RK
    Methods Mol Biol; 1996; 58():425-39. PubMed ID: 8713892
    [No Abstract]   [Full Text] [Related]  

  • 42. Characterization of fluorescent nucleoside triphosphates by capillary electrophoresis with laser-induced fluorescence detection: action of alkaline phosphatase and DNA polymerase.
    Evangelista RA; Liu MS; Rampal S; Chen FT
    Anal Biochem; 1996 Mar; 235(1):89-97. PubMed ID: 8850551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of microsatellite instability in cancers by arbitrarily primed-PCR fingerprinting using a fluorescently labeled primer (FAP-PCR).
    Yasuda J; Kashiwabara H; Kawakami K; Uematsu K; Sugano K; Perucho M; Sekiya T
    Biol Chem; 1996 Sep; 377(9):563-70. PubMed ID: 9067254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dideoxy sequencing reactions using Taq polymerase.
    Arigoni F; Kaminski PA
    Methods Mol Biol; 1993; 23():109-14. PubMed ID: 8220741
    [No Abstract]   [Full Text] [Related]  

  • 45. [Amplification of pig microsatellite markers using multiplex PCR].
    Guo XL; Xu NY; Looft C; Reinsch N; Kalm E
    Yi Chuan; 2004 Jan; 26(1):40-4. PubMed ID: 15626665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of three methods of microsatellite detection.
    Christensen M; Sunde L; Bolund L; Orntoft TF
    Scand J Clin Lab Invest; 1999 May; 59(3):167-77. PubMed ID: 10400161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence-based classification of microsatellites using a single-wavelength semiautomatic sequencer: genotype assignment and identity tests by analysis of comigrating peak profiles.
    Moscetti A; Boschi I; Dobosz M; Destro-Bisol G; Pescarmona M; d'Aloja E; Pascali VL
    Electrophoresis; 1995 Oct; 16(10):1875-80. PubMed ID: 8586056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using the fluorogenic 5' nuclease assay for high-throughput detection of (CA)n repeats in radiation hybrid mapping.
    Jouquand S; André C; Chéron A; Hitte C; Chuat JC; Galibert F
    Biotechniques; 2000 Apr; 28(4):754-8, 760-2, 764-5. PubMed ID: 10769755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increasing sample throughput on a standard 36-lane model 377 DNA sequencer to 48 or 64 samples per run.
    Velickovic ZM; Velickovic MB; Grebe SK
    Biotechniques; 1999 Oct; 27(4):652-4. PubMed ID: 10524298
    [No Abstract]   [Full Text] [Related]  

  • 50. Microsatellite genotyping of post-PCR fluorescently labeled markers.
    Kondo H; Tahira T; Hayashi H; Oshima K; Hayashi K
    Biotechniques; 2000 Oct; 29(4):868-72. PubMed ID: 11056818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Instability at microsatellite sequences in spontaneously aborted human embryos provides evidence for a novel mechanism for recurrent miscarriages.
    Kiaris H; Koumantakis E; Ergazaki M; Sifakis S; Spandidos D
    Oncol Rep; 1995 Sep; 2(5):805-9. PubMed ID: 21597821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single nucleotide sequence analysis: a cost- and time-effective protocol for the analysis of microsatellite- and indel-rich chloroplast DNA regions.
    Guicking D; Kröger-Kilian T; Weising K; Blattner FR
    Mol Ecol Resour; 2008 Jan; 8(1):62-5. PubMed ID: 21585719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs.
    Ginot F; Bordelais I; Nguyen S; Gyapay G
    Nucleic Acids Res; 1996 Feb; 24(3):540-1. PubMed ID: 8602372
    [No Abstract]   [Full Text] [Related]  

  • 54. Electrophoresis of sequence reaction samples.
    Bankier AT
    Methods Mol Biol; 1996; 58():393-401. PubMed ID: 8713889
    [No Abstract]   [Full Text] [Related]  

  • 55. New technology shows genetic differences in cancer patients.
    Printz C
    Cancer; 2011 Sep; 117(17):3871. PubMed ID: 21858797
    [No Abstract]   [Full Text] [Related]  

  • 56. The application of microsatellites in molecular pathology.
    Naidoo R; Chetty R
    Pathol Oncol Res; 1998; 4(4):310-5. PubMed ID: 9887364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [A new microsatellite instability analysis using fluorescent primers and laser scanning].
    Oki E; Oda S; Tokunaga E; Maehara Y; Sugimachi K
    Gan To Kagaku Ryoho; 1998 Apr; 25 Suppl 3():436-42. PubMed ID: 9589049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis.
    Oda S; Oki E; Maehara Y; Sugimachi K
    Nucleic Acids Res; 1997 Sep; 25(17):3415-20. PubMed ID: 9254697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An integrated microsatellite length analysis using an automated fluorescent DNA sequencer.
    Toh Y; Oki E; Oda S; Tomoda M; Tomisaki S; Ichiyoshi Y; Ohno S; Sugimachi K
    Cancer Res; 1996 Jun; 56(12):2688-91. PubMed ID: 8665494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing microsatellite instability with semiautomated fluorescent technology: application to the analysis of primary brain tumors.
    Sobrido MJ; Barros F; Lema M; Rodriguez-Pereira C; Forteza J; Carracedo A
    Electrophoresis; 2000 May; 21(8):1471-7. PubMed ID: 10832875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.