These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 9589603)

  • 21. Oxidation products of quercetin catalyzed by mushroom tyrosinase.
    Kubo I; Nihei K; Shimizu K
    Bioorg Med Chem; 2004 Oct; 12(20):5343-7. PubMed ID: 15388161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid halogen substitution and dibenzodioxin formation during tyrosinase-catalyzed oxidation of 4-halocatechols.
    Stratford MR; Riley PA; Ramsden CA
    Chem Res Toxicol; 2011 Mar; 24(3):350-6. PubMed ID: 21306115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A substrate recycling assay for phenolic compounds using tyrosinase and NADH.
    Brown RS; Male KB; Luong JH
    Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspects of cuticular sclerotization in the locust, Scistocerca gregaria, and the beetle, Tenebrio molitor.
    Andersen SO; Roepstorff P
    Insect Biochem Mol Biol; 2007 Mar; 37(3):223-34. PubMed ID: 17296497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial plate assays and electrochemical methods: an efficient tandem for evaluating the ability of catechol-thioether metabolites of MDMA ("ecstasy") to induce toxic effects through redox-cycling.
    Felim A; Urios A; Neudörffer A; Herrera G; Blanco M; Largeron M
    Chem Res Toxicol; 2007 Apr; 20(4):685-93. PubMed ID: 17355154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosinase-catalyzed oxidation of 3,4-dihydroxyphenylglycine.
    Sugumaran M; Tan S; Sun HL
    Arch Biochem Biophys; 1996 May; 329(2):175-80. PubMed ID: 8638949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase.
    Schved F; Kahn V
    Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tyrosinase autoactivation and the chemistry of ortho-quinone amines.
    Land EJ; Ramsden CA; Riley PA
    Acc Chem Res; 2003 May; 36(5):300-8. PubMed ID: 12755639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods.
    Biegunski AT; Michota A; Bukowska J; Jackowska K
    Bioelectrochemistry; 2006 Sep; 69(1):41-8. PubMed ID: 16423566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol.
    Jacobsohn GM; Jacobsohn MK
    Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic cooperativity of tyrosinase. A general mechanism.
    Muñoz-Muñoz JL; Garcia-Molina F; Varon R; Tudela J; Garcia-Cánovas F; Rodríguez-López JN
    Acta Biochim Pol; 2011; 58(3):303-11. PubMed ID: 21887411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical oxidation of N-acyldopamines and regioselective reactions of their quinones with N-acetylcysteine and thiourea.
    Huang X; Xu R; Hawley MD; Hopkins TL; Kramer KJ
    Arch Biochem Biophys; 1998 Apr; 352(1):19-30. PubMed ID: 9521807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone.
    Naish S; Cooksey CJ; Riley PA
    Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative calcium release from catechol.
    Riley PA; Stratford MR
    Bioorg Med Chem Lett; 2015 Apr; 25(7):1453-4. PubMed ID: 25740160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the metabolism and intrinsic reactivity of a novel catechol metabolite.
    Hutzler JM; Melton RJ; Rumsey JM; Thompson DC; Rock DA; Wienkers LC
    Chem Res Toxicol; 2008 May; 21(5):1125-33. PubMed ID: 18407675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insect melanogenesis. III. Metabolon formation in the melanogenic pathway-regulation of phenoloxidase activityy by endogenous dopachrome isomerase (decarboxylating) from Manduca sexta.
    Sugumaran M; Nellaiappan K; Amaratunga C; Cardinale S; Scott T
    Arch Biochem Biophys; 2000 Jun; 378(2):393-403. PubMed ID: 10860557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implications for tumor-initiating activity.
    Zahid M; Kohli E; Saeed M; Rogan E; Cavalieri E
    Chem Res Toxicol; 2006 Jan; 19(1):164-72. PubMed ID: 16411670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity.
    Ito S; Ojika M; Yamashita T; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.