These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9590164)

  • 21. Interspersed repeats are found predominantly in the "old" alpha satellite families.
    Kazakov AE; Shepelev VA; Tumeneva IG; Alexandrov AA; Yurov YB; Alexandrov IA
    Genomics; 2003 Dec; 82(6):619-27. PubMed ID: 14611803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional dynamics of human centromeric chromatin.
    Schueler MG; Sullivan BA
    Annu Rev Genomics Hum Genet; 2006; 7():301-13. PubMed ID: 16756479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata.
    Zhang W; Yi C; Bao W; Liu B; Cui J; Yu H; Cao X; Gu M; Liu M; Cheng Z
    Plant Physiol; 2005 Sep; 139(1):306-15. PubMed ID: 16113220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centromeric Satellite DNA in Flatfish (Order Pleuronectiformes) and Its Relation to Speciation Processes.
    Rodríguez FR; de la Herrán R; Navajas-Pérez R; Cano-Roldán B; Sola-Campoy PJ; García-Zea JA; Rejón CR
    J Hered; 2017 Mar; 108(2):217-222. PubMed ID: 28173078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Targeted Sequencing of Alpha Satellite DNA in Cercopithecus pogonias Provides New Insight Into the Diversity and Dynamics of Centromeric Repeats in Old World Monkeys.
    Cacheux L; Ponger L; Gerbault-Seureau M; Loll F; Gey D; Richard FA; Escudé C
    Genome Biol Evol; 2018 Jul; 10(7):1837-1851. PubMed ID: 29860303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence organization and functional annotation of human centromeres.
    Rudd MK; Schueler MG; Willard HF
    Cold Spring Harb Symp Quant Biol; 2003; 68():141-9. PubMed ID: 15338612
    [No Abstract]   [Full Text] [Related]  

  • 27. [Pericentromeric alpha-satellite DNA in human chromosome 21 bordering with euchromatin DNA].
    Mashkova TD; Tiumeneva IG; Zinov'eva OL; Romanova LIu; Jubs E; Aleksandrov IA
    Mol Biol (Mosk); 1996; 30(5):1044-54. PubMed ID: 8992292
    [No Abstract]   [Full Text] [Related]  

  • 28. Satellite DNA evolution.
    Plohl M; Meštrović N; Mravinac B
    Genome Dyn; 2012; 7():126-52. PubMed ID: 22759817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata.
    Kawabe A; Charlesworth D
    J Mol Evol; 2007 Feb; 64(2):237-47. PubMed ID: 17160639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJ alpha binding region.
    Romanova LY; Deriagin GV; Mashkova TD; Tumeneva IG; Mushegian AR; Kisselev LL; Alexandrov IA
    J Mol Biol; 1996 Aug; 261(3):334-40. PubMed ID: 8780776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21.
    Lo AW; Liao GC; Rocchi M; Choo KH
    Genome Res; 1999 Oct; 9(10):895-908. PubMed ID: 10523519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages.
    Bulazel KV; Ferreri GC; Eldridge MD; O'Neill RJ
    Genome Biol; 2007; 8(8):R170. PubMed ID: 17708770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains.
    Hall SE; Kettler G; Preuss D
    Genome Res; 2003 Feb; 13(2):195-205. PubMed ID: 12566397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Genomic Landscape of Centromeres in Cancers.
    Saha AK; Mourad M; Kaplan MH; Chefetz I; Malek SN; Buckanovich R; Markovitz DM; Contreras-Galindo R
    Sci Rep; 2019 Aug; 9(1):11259. PubMed ID: 31375789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres.
    Masumoto H; Nakano M; Ohzeki J
    Chromosome Res; 2004; 12(6):543-56. PubMed ID: 15289662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA.
    Koch J
    Hum Mol Genet; 2000 Jan; 9(2):149-54. PubMed ID: 10607825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes).
    Garrido-Ramos MA; de la Herrán R; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Mol Phylogenet Evol; 1999 Jul; 12(2):200-4. PubMed ID: 10381322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
    Sharma S; Raina SN
    Cytogenet Genome Res; 2005; 109(1-3):15-26. PubMed ID: 15753554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5.
    Faravelli M; Moralli D; Bertoni L; Attolini C; Chernova O; Raimondi E; Giulotto E
    Cytogenet Cell Genet; 1998; 83(3-4):281-6. PubMed ID: 10072604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Telomere replication, kinetochore organizers, and satellite DNA evolution.
    Holmquist GP; Dancis B
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4566-70. PubMed ID: 291989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.