These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9590443)

  • 1. Substructure and responses of cholinergic synaptic vesicles in the atomic force microscope.
    García RA; Laney DE; Parsons SM; Hansma HG
    J Neurosci Res; 1998 May; 52(3):350-5. PubMed ID: 9590443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy.
    Laney DE; Garcia RA; Parsons SM; Hansma HG
    Biophys J; 1997 Feb; 72(2 Pt 1):806-13. PubMed ID: 9017205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.
    Giompres PE; Whittaker VP
    Biochim Biophys Acta; 1984 Mar; 770(2):166-70. PubMed ID: 6696906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural model of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata deduced from density measurements at different osmotic pressures.
    Breer H; Morris SJ; Whittaker VP
    Eur J Biochem; 1978 Jul; 87(3):453-8. PubMed ID: 679947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine incorporation by cholinergic synaptic vesicles from Torpedo marmorata.
    Diebler MF; Morot-Gaudry Y
    J Neurochem; 1981 Aug; 37(2):467-75. PubMed ID: 7264670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ.
    Zimmermann H; Denston CR
    Neuroscience; 1977; 2(5):715-30. PubMed ID: 593552
    [No Abstract]   [Full Text] [Related]  

  • 9. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release.
    Zimmerman H; Denston CR
    Neuroscience; 1977; 2(5):695-714. PubMed ID: 22832
    [No Abstract]   [Full Text] [Related]  

  • 10. A morphometric analysis of Torpedo synaptic vesicles isolated by iso-osmotic sucrose gradient separation.
    Fox GQ; Kötting D; Dowe GH
    Brain Res; 1989 Oct; 498(2):279-88. PubMed ID: 2790483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic vesicle specific proteoglycan: stability in isolated vesicles and in synaptosomes during induced transmitter release.
    Kuhn DM; Volknandt W; Stadler H; Zimmermann H
    J Neurochem; 1988 Jan; 50(1):11-6. PubMed ID: 3121784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of active synaptic vesicles from the electric organ of Torpedo californica and comparison to reserve vesicles.
    Gracz LM; Parsons SM
    Biochim Biophys Acta; 1996 Feb; 1292(2):293-302. PubMed ID: 8597576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicular heterogeneity and turnover of acetylcholine and ATP in cholinergic synaptic vesicles.
    Zimmermann H
    Prog Brain Res; 1979; 49():141-51. PubMed ID: 515429
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of vesicle recycling in vesicular storage and release of acetylcholine in Torpedo electroplaque synapses.
    Suszkiw JB; Whittaker VP
    Prog Brain Res; 1979; 49():153-62. PubMed ID: 515430
    [No Abstract]   [Full Text] [Related]  

  • 15. Saturable [D-Ala2, D-Leu5]-enkephalin transport into cholinergic synaptic vesicles.
    Day NC; Wien D; Michaelson DM
    FEBS Lett; 1985 Apr; 183(1):25-8. PubMed ID: 3884380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the vesamicol receptor in cholinergic synaptic vesicles by acetylcholine and an endogenous factor.
    Noremberg K; Parsons SM
    J Neurochem; 1989 Mar; 52(3):913-20. PubMed ID: 2537382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport.
    Gracz LM; Wang WC; Parsons SM
    Biochemistry; 1988 Jul; 27(14):5268-74. PubMed ID: 3167045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torpedo synaptosomes: evidence for synaptic vesicle fusion accompanying Ca2+-induced ionophore (A23187)-mediated acetylcholine release.
    Michaelson DM; Bilen J; Volsky D
    Brain Res; 1978 Oct; 154(2):409-14. PubMed ID: 356931
    [No Abstract]   [Full Text] [Related]  

  • 19. Dynamic imaging of purified individual synaptic vesicles.
    Parpura V; Doyle RT; Basarsky TA; Henderson E; Haydon PG
    Neuroimage; 1995 Mar; 2(1):3-7. PubMed ID: 9343585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium.
    Bonzelius F; Zimmermann H
    J Neurochem; 1990 Oct; 55(4):1266-73. PubMed ID: 2398359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.