BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 9591361)

  • 1. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach.
    Perez-Campo R; López-Torres M; Cadenas S; Rojas C; Barja G
    J Comp Physiol B; 1998 Apr; 168(3):149-58. PubMed ID: 9591361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial free radical production and aging in mammals and birds.
    Barja G
    Ann N Y Acad Sci; 1998 Nov; 854():224-38. PubMed ID: 9928433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds.
    Barja G; Cadenas S; Rojas C; Pérez-Campo R; López-Torres M
    Free Radic Res; 1994 Oct; 21(5):317-27. PubMed ID: 7842141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial free radical theory of aging: a critical view.
    Sanz A; Stefanatos RK
    Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial free radical theory of aging.
    Barja G
    Prog Mol Biol Transl Sci; 2014; 127():1-27. PubMed ID: 25149212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals.
    Pamplona R; Portero-Otín M; Ruiz C; Gredilla R; Herrero A; Barja G
    Mech Ageing Dev; 2000 Jan; 112(3):169-83. PubMed ID: 10687923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved.
    Herrero A; Barja G
    Mech Ageing Dev; 1998 Jun; 103(2):133-46. PubMed ID: 9701767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decrease of free radical production near critical targets as a cause of maximum longevity in animals.
    Barja G; Cadenas S; Rojas C; López-Torres M; Pérez-Campo R
    Comp Biochem Physiol Biochem Mol Biol; 1994 Aug; 108(4):501-12. PubMed ID: 7953069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.
    Ku HH; Brunk UT; Sohal RS
    Free Radic Biol Med; 1993 Dec; 15(6):621-7. PubMed ID: 8138188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.
    Barja G; Herrero A
    FASEB J; 2000 Feb; 14(2):312-8. PubMed ID: 10657987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.
    Sanchez-Roman I; Barja G
    Exp Gerontol; 2013 Oct; 48(10):1030-42. PubMed ID: 23454735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the mitochondrial free radical theory of aging intact?
    Sanz A; Pamplona R; Barja G
    Antioxid Redox Signal; 2006; 8(3-4):582-99. PubMed ID: 16677102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts.
    Barja G
    Antioxid Redox Signal; 2013 Oct; 19(12):1420-45. PubMed ID: 23642158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.
    Montgomery MK; Buttemer WA; Hulbert AJ
    Exp Gerontol; 2012 Mar; 47(3):211-22. PubMed ID: 22230489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity.
    Lopez-Torres M; Perez-Campo R; Rojas C; Cadenas S; Barja G
    Mech Ageing Dev; 1993 Aug; 70(3):177-99. PubMed ID: 8246633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
    Herrero A; Barja G
    Mech Ageing Dev; 1997 Nov; 98(2):95-111. PubMed ID: 9379714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longevity and antioxidant enzymes, non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study.
    Pérez-Campo R; López-Torres M; Rojas C; Cadenas S; Barja G
    J Comp Physiol B; 1994; 163(8):682-9. PubMed ID: 8195472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.
    Barja G
    J Bioenerg Biomembr; 1999 Aug; 31(4):347-66. PubMed ID: 10665525
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.