BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9591589)

  • 1. Quantitative imaging of iodine-131 distributions in brain tumors with pinhole SPECT: a phantom study.
    Smith MF; Gilland DR; Coleman RE; Jaszczak RJ
    J Nucl Med; 1998 May; 39(5):856-64. PubMed ID: 9591589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.
    Jaszczak RJ; Li J; Wang H; Zalutsky MR; Coleman RE
    Phys Med Biol; 1994 Mar; 39(3):425-37. PubMed ID: 15551591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of high-resolution pinhole SPECT using a small rotating animal.
    Habraken JB; de Bruin K; Shehata M; Booij J; Bennink R; van Eck Smit BL; Busemann Sokole E
    J Nucl Med; 2001 Dec; 42(12):1863-9. PubMed ID: 11752086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of 131I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Oct; 41(10):1760-7. PubMed ID: 11038009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammotomography with pinhole incomplete circular orbit SPECT.
    Tornai MP; Bowsher JE; Jaszczak RJ; Pieper BC; Greer KL; Hardenbergh PH; Coleman RE
    J Nucl Med; 2003 Apr; 44(4):583-93. PubMed ID: 12679403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation study of a novel target oriented SPECT design using a variable pinhole collimator.
    Bae S; Chun J; Cha H; Yeom JY; Lee K; Lee H
    Med Phys; 2017 Feb; 44(2):470-478. PubMed ID: 28032904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume and activity quantitation with iodine-123 SPECT.
    Gilland DR; Jaszczak RJ; Turkington TG; Greer KL; Coleman RE
    J Nucl Med; 1994 Oct; 35(10):1707-13. PubMed ID: 7931675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of pinhole collimator materials for micron-resolution ex vivo SPECT.
    Nguyen MP; Goorden MC; Kamphuis C; Beekman FJ
    Phys Med Biol; 2019 May; 64(10):105017. PubMed ID: 30947156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collimator design for a multipinhole brain SPECT insert for MRI.
    Van Audenhaege K; Van Holen R; Vanhove C; Vandenberghe S
    Med Phys; 2015 Nov; 42(11):667989. PubMed ID: 26520758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution pinhole SPECT for tumor imaging.
    Strand SE; Ivanovic M; Erlandsson K; Weber DA; Franceschi D; Button T; Sjögreen K
    Acta Oncol; 1993; 32(7-8):861-7. PubMed ID: 8305237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals.
    Weber DA; Ivanovic M; Franceschi D; Strand SE; Erlandsson K; Franceschi M; Atkins HL; Coderre JA; Susskind H; Button T
    J Nucl Med; 1994 Feb; 35(2):342-8. PubMed ID: 8295008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation.
    Deloar HM; Watabe H; Aoi T; Iida H
    Phys Med Biol; 2003 Apr; 48(8):995-1008. PubMed ID: 12741497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study.
    Yokoi T; Shinohara H; Onishi H
    Ann Nucl Med; 2002 Feb; 16(1):11-8. PubMed ID: 11922203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies.
    Ishizu K; Mukai T; Yonekura Y; Pagani M; Fujita T; Magata Y; Nishizawa S; Tamaki N; Shibasaki H; Konishi J
    J Nucl Med; 1995 Dec; 36(12):2282-7. PubMed ID: 8523120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study.
    Vanhove C; Defrise M; Franken PR; Everaert H; Deconinck F; Bossuyt A
    Eur J Nucl Med; 2000 Feb; 27(2):140-6. PubMed ID: 10755718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems.
    Yan S; Bowsher J; Tough M; Cheng L; Yin FF
    Med Phys; 2014 Nov; 41(11):112504. PubMed ID: 25370663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved quantification in multiple-pinhole SPECT by anatomy-based reconstruction using microCT information.
    Vanhove C; Defrise M; Bossuyt A; Lahoutte T
    Eur J Nucl Med Mol Imaging; 2011 Jan; 38(1):153-65. PubMed ID: 20882279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative accuracy of dopaminergic neurotransmission imaging with (123)I SPECT.
    Soret M; Koulibaly PM; Darcourt J; Hapdey S; Buvat I
    J Nucl Med; 2003 Jul; 44(7):1184-93. PubMed ID: 12843235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A geometric system model of finite aperture in small animal pinhole SPECT imaging.
    Hsu CH; Huang PC
    Comput Med Imaging Graph; 2006 Apr; 30(3):181-5. PubMed ID: 16725307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.