These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 9591621)
1. Joint NASA-ESA-DARA Study. Part three: cardiorespiratory response to elevated CO2 levels during sleep. Gundel A; Drescher J; Weihrauch MR Aviat Space Environ Med; 1998 May; 69(5):496-500. PubMed ID: 9591621 [TBL] [Abstract][Full Text] [Related]
2. Joint NASA-ESA-DARA Study. Part three: characterization of sleep under ambient CO2-levels of 0.7% and 1.2%. Gundel A; Parisi RA; Strobel R; Weihrauch MR Aviat Space Environ Med; 1998 May; 69(5):491-5. PubMed ID: 9591620 [TBL] [Abstract][Full Text] [Related]
3. Joint NASA-ESA-DARA Study. Part three: circadian rhythms and activity-rest cycle under different CO2 concentrations. Samel A; Vejvoda M; Wittiber K; Wenzel J Aviat Space Environ Med; 1998 May; 69(5):501-5. PubMed ID: 9591622 [TBL] [Abstract][Full Text] [Related]
4. Joint NASA-ESA-DARA Study. Part three: effects of chronically elevated CO2 on mental performance during 26 days of confinement. Manzey D; Lorenz B Aviat Space Environ Med; 1998 May; 69(5):506-14. PubMed ID: 9591623 [TBL] [Abstract][Full Text] [Related]
5. Effects of chronically increased ambient CO2 concentrations on aerobic capacity. Hoffmann U; Schöllmann C; Wackerhage H; Leyk D; Wenzel J Aviat Space Environ Med; 1998 Apr; 69(4):397-402. PubMed ID: 9561288 [TBL] [Abstract][Full Text] [Related]
6. The influence of CO2 in a space-like environment: study design. Wenzel J; Luks N; Plath G; Wilke D; Gerzer R Aviat Space Environ Med; 1998 Mar; 69(3):285-90. PubMed ID: 9549566 [TBL] [Abstract][Full Text] [Related]
7. The effects of moderately elevated ambient carbon dioxide levels on human physiology and performance: a joint NASA-ESA-DARA study--overview. Frey MA; Sulzman FM; Oser H; Ruyters G Aviat Space Environ Med; 1998 Mar; 69(3):282-4. PubMed ID: 9549565 [No Abstract] [Full Text] [Related]
8. A comparison of the effects on respiratory carbon dioxide response, arterial blood pressure, and heart rate of dexmedetomidine, propofol, and midazolam in sevoflurane-anesthetized rabbits. Chang C; Uchiyama A; Ma L; Mashimo T; Fujino Y Anesth Analg; 2009 Jul; 109(1):84-9. PubMed ID: 19535698 [TBL] [Abstract][Full Text] [Related]
9. The cardiorespiratory activation response at an arousal from sleep is independent of the level of CO(2). Trinder J; Ivens C; Kleiman J; Kleverlaan D; White DP J Sleep Res; 2006 Jun; 15(2):174-82. PubMed ID: 16704573 [TBL] [Abstract][Full Text] [Related]
10. Effects of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams. Ross RM; Krise WF; Redell LA; Bennett RM Environ Toxicol; 2001; 16(1):84-95. PubMed ID: 11345549 [TBL] [Abstract][Full Text] [Related]
11. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Brunekreef B; Beelen R; Hoek G; Schouten L; Bausch-Goldbohm S; Fischer P; Armstrong B; Hughes E; Jerrett M; van den Brandt P Res Rep Health Eff Inst; 2009 Mar; (139):5-71; discussion 73-89. PubMed ID: 19554969 [TBL] [Abstract][Full Text] [Related]
12. Rat growth, body composition, and renal function during 30 days increased ambient CO2 exposure. Wade CE; Wang TJ; Lang KC; Corbin BJ; Steele MK Aviat Space Environ Med; 2000 Jun; 71(6):599-609. PubMed ID: 10870819 [TBL] [Abstract][Full Text] [Related]
13. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice. Marsman D Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194 [TBL] [Abstract][Full Text] [Related]
14. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures. Jauchem JR; Sherry CJ; Fines DA; Cook MC Forensic Sci Int; 2006 Aug; 161(1):20-30. PubMed ID: 16289999 [TBL] [Abstract][Full Text] [Related]
15. The effects of breathing 5% CO2 on human cardiovascular responses and tolerance to orthostatic stress. Howden R; Lightfoot JT; Brown SJ; Swaine IL Exp Physiol; 2004 Jul; 89(4):465-71. PubMed ID: 15131068 [TBL] [Abstract][Full Text] [Related]
16. Physiological responses to repeated apneas in underwater hockey players and controls. Lemaître F; Polin D; Joulia F; Boutry A; Le Pessot D; Chollet D; Tourny-Chollet C Undersea Hyperb Med; 2007; 34(6):407-14. PubMed ID: 18251437 [TBL] [Abstract][Full Text] [Related]
17. Physiological and psychological effects associated with high carbon dioxide levels in healthy men. Maresh CM; Armstrong LE; Kavouras SA; Allen GJ; Casa DJ; Whittlesey M; LaGasse KE Aviat Space Environ Med; 1997 Jan; 68(1):41-5. PubMed ID: 9006881 [TBL] [Abstract][Full Text] [Related]
18. Treatment with leuprolide acetate decreases the threshold of the ventilatory response to carbon dioxide in healthy males. Mateika JH; Omran Q; Rowley JA; Zhou XS; Diamond MP; Badr MS J Physiol; 2004 Dec; 561(Pt 2):637-46. PubMed ID: 15375194 [TBL] [Abstract][Full Text] [Related]
19. Is slow wave sleep an appropriate recording condition for heart rate variability analysis? Brandenberger G; Buchheit M; Ehrhart J; Simon C; Piquard F Auton Neurosci; 2005 Aug; 121(1-2):81-6. PubMed ID: 16005265 [TBL] [Abstract][Full Text] [Related]
20. Autonomic changes during wake-sleep transition: a heart rate variability based approach. Shinar Z; Akselrod S; Dagan Y; Baharav A Auton Neurosci; 2006 Dec; 130(1-2):17-27. PubMed ID: 16759916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]