BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9591643)

  • 21. Direct injection of cell-free Kir1.1 protein into Xenopus oocytes replicates single-channel currents derived from Kir1.1 mRNA.
    Sackin H; Nanazashvili M; Makino S
    Channels (Austin); 2015; 9(4):196-9. PubMed ID: 26102359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K(+) channels in neuroendocrine islet beta-cells through an interaction with the channel N terminus.
    MacDonald PE; Wang G; Tsuk S; Dodo C; Kang Y; Tang L; Wheeler MB; Cattral MS; Lakey JR; Salapatek AM; Lotan I; Gaisano HY
    Mol Endocrinol; 2002 Nov; 16(11):2452-61. PubMed ID: 12403834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1).
    Tang W; Qin CL; Yang XC
    Recept Channels; 1995; 3(3):175-83. PubMed ID: 8821791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of isosorbiddinitrate on exogenously expressed slowly activating K+ channels and endogenous K+ channels in Xenopus oocytes.
    Busch AE; Kopp HG; Waldegger S; Samarzija I; Süssbrich H; Raber G; Kunzelmann K; Ruppersberg JP; Lang F
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):735-41. PubMed ID: 8815207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determinants of potassium channel assembly localised within the cytoplasmic C-terminal domain of Kv2.1.
    Bentley GN; Brooks MA; O'Neill CA; Findlay JB
    Biochim Biophys Acta; 1999 Apr; 1418(1):176-84. PubMed ID: 10209222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SPAK and OSR1 Sensitive Kir2.1 K+ Channels.
    Fezai M; Ahmed M; Hosseinzadeh Z; Elvira B; Lang F
    Neurosignals; 2015; 23(1):20-33. PubMed ID: 26673921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
    Shieh RC; Chang JC; Arreola J
    Biophys J; 1998 Nov; 75(5):2313-22. PubMed ID: 9788926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of ion channel localization and phosphorylation by neuronal activity.
    Misonou H; Mohapatra DP; Park EW; Leung V; Zhen D; Misonou K; Anderson AE; Trimmer JS
    Nat Neurosci; 2004 Jul; 7(7):711-8. PubMed ID: 15195093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
    Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D
    Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3.
    Munoz C; Pakladok T; Almilaji A; Elvira B; Decher N; Shumilina E; Lang F
    Cell Physiol Biochem; 2014; 33(2):491-500. PubMed ID: 24556932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring extracellular ion gradients from single channels with ion-selective microelectrodes.
    Messerli MA; Corson ED; Smith PJ
    Biophys J; 2007 Apr; 92(7):L52-4. PubMed ID: 17259274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of density and gating of delayed-rectifier potassium channels on resting membrane potential and its fluctuations.
    Marom S; Salman H; Lyakhov V; Braun E
    J Membr Biol; 1996 Dec; 154(3):267-74. PubMed ID: 8952956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inward rectification of the minK potassium channel.
    Blumenthal EM; Kaczmarek LK
    J Membr Biol; 1993 Oct; 136(1):23-9. PubMed ID: 8271270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Down-regulation of inwardly rectifying Kir2.1 K+ channels by human parvovirus B19 capsid protein VP1.
    Ahmed M; Elvira B; Almilaji A; Bock CT; Kandolf R; Lang F
    J Membr Biol; 2015 Apr; 248(2):223-9. PubMed ID: 25487255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a K+ channel from potato leaves by functional expression in Xenopus oocytes.
    Brandt S; Fisahn J
    Plant Cell Physiol; 1998 Jun; 39(6):600-6. PubMed ID: 9697343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel.
    Scannevin RH; Murakoshi H; Rhodes KJ; Trimmer JS
    J Cell Biol; 1996 Dec; 135(6 Pt 1):1619-32. PubMed ID: 8978827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging plasma membrane proteins in large membrane patches of Xenopus oocytes.
    Singer-Lahat D; Dascal N; Mittelman L; Peleg S; Lotan I
    Pflugers Arch; 2000 Aug; 440(4):627-33. PubMed ID: 10958347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels in Xenopus oocytes.
    Chen H; Kubo Y; Hoshi T; Heinemann SH
    FEBS Lett; 1998 Feb; 422(3):307-10. PubMed ID: 9498805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.