BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9591643)

  • 61. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes.
    Schreibmayer W; Lester HA; Dascal N
    Pflugers Arch; 1994 Mar; 426(5):453-8. PubMed ID: 7517034
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cell-transistor coupling: investigation of potassium currents recorded with p- and n-channel FETs.
    Wrobel G; Seifert R; Ingebrandt S; Enderlein J; Ecken H; Baumann A; Kaupp UB; Offenhäusser A
    Biophys J; 2005 Nov; 89(5):3628-38. PubMed ID: 16100284
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology.
    Faszewski EE; Kunkel JG
    J Exp Zool; 2001 Nov; 290(6):652-61. PubMed ID: 11748614
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improvement and testing of a concentration-clamp system for oocytes of Xenopus laevis.
    Madeja M; Musshoff U; Speckmann EJ
    J Neurosci Methods; 1995 Dec; 63(1-2):211-3. PubMed ID: 8788066
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Two-electrode voltage clamp of Xenopus oocytes under high hydrostatic pressure.
    Schmalwasser H; Neef A; Elliott AA; Heinemann SH
    J Neurosci Methods; 1998 Jun; 81(1-2):1-7. PubMed ID: 9696303
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Co-localization of the inwardly rectifying potassium ion channel, Kir2.2, and the substance P receptor in single locus coeruleus neurons.
    Stonehouse AH; Pringle JH; Norman RI; Stanfield PR; Conley EC; Brammar WJ
    Ann N Y Acad Sci; 1999; 897():429-31. PubMed ID: 10676470
    [No Abstract]   [Full Text] [Related]  

  • 67. Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid.
    Zaks-Makhina E; Li H; Grishin A; Salvador-Recatala V; Levitan ES
    J Biol Chem; 2009 Jun; 284(23):15432-8. PubMed ID: 19366693
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Voltage-dependent potassium currents expressed in Xenopus laevis oocytes after injection of mRNA isolated from trophozoites of Giardia lamblia (strain Portland-1).
    Ponce A; Jimenez-Cardoso E; Eligio-Garcia L
    Physiol Rep; 2013 Dec; 1(7):e00186. PubMed ID: 24744864
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Heterologous expression of the human potassium channel Kv2.1 in clonal mammalian cells by direct cytoplasmic microinjection of cRNA.
    Ikeda SR; Soler F; Zühlke RD; Joho RH; Lewis DL
    Pflugers Arch; 1992 Nov; 422(2):201-3. PubMed ID: 1283219
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3-trifluoromethyl-4-nitro-5-arylpyrazoles are novel K(ATP) channel agonists.
    Peat AJ; Townsend C; Craig McKay M; Garrido D; Terry CM; Wilson JL; Thomson SA
    Bioorg Med Chem Lett; 2004 Feb; 14(3):813-6. PubMed ID: 14741296
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The plasma membrane of Xenopus laevis oocytes contains voltage-dependent anion-selective porin channels.
    Steinacker P; Awni LA; Becker S; Cole T; Reymann S; Hesse D; Kratzin HD; Morris-Wortmann C; Schwarzer C; Thinnes FP; Hilschmann N
    Int J Biochem Cell Biol; 2000 Feb; 32(2):225-34. PubMed ID: 10687956
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells.
    Shi G; Kleinklaus AK; Marrion NV; Trimmer JS
    J Biol Chem; 1994 Sep; 269(37):23204-11. PubMed ID: 8083226
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monitoring voltage-sensitive membrane impedance change using radio frequency interrogation.
    Dharia S; Rabbitt RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():889-94. PubMed ID: 21097203
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intracellular K+ concentration decrease is not obligatory for apoptosis.
    Börjesson SI; Englund UH; Asif MH; Willander M; Elinder F
    J Biol Chem; 2011 Nov; 286(46):39823-8. PubMed ID: 21949184
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes.
    Zhang Y; Hamill OP
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):101-15. PubMed ID: 10673547
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional Potassium Channels in Macrophages.
    Man Q; Gao Z; Chen K
    J Membr Biol; 2023 Apr; 256(2):175-187. PubMed ID: 36622407
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recording macroscopic currents in large patches from Xenopus oocytes.
    Rohacs T
    Methods Mol Biol; 2013; 998():119-31. PubMed ID: 23529425
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patch-Clamp Recordings of the KcsA K
    Matulef K; Valiyaveetil FI
    Methods Mol Biol; 2018; 1684():181-191. PubMed ID: 29058192
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improved preparation of Xenopus oocytes for patch-clamp recording.
    Choe H; Sackin H
    Pflugers Arch; 1997 Mar; 433(5):648-52. PubMed ID: 9049151
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Conductance stability and Na+ interaction with Shab K+ channels under low K+ conditions.
    Gómez-Lagunas F; Carrillo E; Barriga-Montoya C
    Channels (Austin); 2021 Dec; 15(1):648-665. PubMed ID: 34658293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.