These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9591671)

  • 41. A conformational change in F-actin when myosin binds: fluorescence resonance energy transfer detects an increase in the radial coordinate of Cys-374.
    Moens PD; dos Remedios CG
    Biochemistry; 1997 Jun; 36(24):7353-60. PubMed ID: 9200683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes.
    Thomas DD; Ramachandran S; Roopnarine O; Hayden DW; Ostap EM
    Biophys J; 1995 Apr; 68(4 Suppl):135S-141S. PubMed ID: 7787056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distance measurements near the myosin head-rod junction using fluorescence spectroscopy.
    Kekic M; Huang W; Moens PD; Hambly BD; dos Remedios CG
    Biophys J; 1996 Jul; 71(1):40-7. PubMed ID: 8804587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proximity relationships between engineered cysteine residues in chicken skeletal myosin regulatory light chain. A resonance energy transfer study.
    Wolff-Long VL; Tao T; Lowey S
    J Biol Chem; 1995 Dec; 270(52):31111-8. PubMed ID: 8537372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probes bound to myosin Cys-707 rotate during length transients in contraction.
    Burghardt TP; Garamszegi SP; Ajtai K
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9631-6. PubMed ID: 9275174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myosin-induced changes in F-actin: fluorescence probing of subdomain 2 by dansyl ethylenediamine attached to Gln-41.
    Kim E; Miller CJ; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1996 Mar; 70(3):1439-46. PubMed ID: 8785300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molluscan twitchin can control actin-myosin interaction during ATPase cycle.
    Borovikov YS; Shelud'ko NS; Avrova SV
    Arch Biochem Biophys; 2010 Mar; 495(2):122-8. PubMed ID: 20060377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction.
    Maruta S; Homma K
    J Biochem; 2000 Oct; 128(4):695-704. PubMed ID: 11011153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism for coupling free energy in ATPase to the myosin active site.
    Park S; Ajtai K; Burghardt TP
    Biochemistry; 1997 Mar; 36(11):3368-72. PubMed ID: 9116016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distances between tropomyosin sites across the muscle thin filament using luminescence resonance energy transfer: evidence for tropomyosin flexibility.
    Chen Y; Lehrer SS
    Biochemistry; 2004 Sep; 43(36):11491-9. PubMed ID: 15350135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactivities of Cys707 (SH1) in intermediate states of myosin subfragment-1 ATPase.
    Hiratsuka Y; Eto M; Yazawa M; Morita F
    J Biochem; 1998 Sep; 124(3):609-14. PubMed ID: 9722673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional transitions in myosin: role of highly conserved Gly and Glu residues in the active site.
    Onishi H; Morales MF; Kojima S; Katoh K; Fujiwara K
    Biochemistry; 1997 Apr; 36(13):3767-72. PubMed ID: 9092805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ca2+- and S1-induced conformational changes of reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy: structural evidence for three States of thin filament.
    Hai H; Sano K; Maeda K; MaƩda Y; Miki M
    J Biochem; 2002 Mar; 131(3):407-18. PubMed ID: 11872170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
    Xu S; Gu J; Belknap B; White H; Yu LC
    Biophys J; 2006 Nov; 91(9):3370-82. PubMed ID: 16905611
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subunit interactions within an expressed regulatory domain of chicken skeletal myosin. Location of the NH2 terminus of the regulatory light chain by fluorescence resonance energy transfer.
    Saraswat LD; Lowey S
    J Biol Chem; 1998 Jul; 273(28):17671-9. PubMed ID: 9651364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374.
    Miki M
    Biochemistry; 1991 Nov; 30(45):10878-84. PubMed ID: 1932011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooperative rigor binding of myosin to actin is a function of F-actin structure.
    Orlova A; Egelman EH
    J Mol Biol; 1997 Feb; 265(5):469-74. PubMed ID: 9048941
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the conformational change of myosin during ATP hydrolysis using fluorescence resonance energy transfer.
    Mizukura Y; Maruta S
    J Biochem; 2002 Sep; 132(3):471-82. PubMed ID: 12204118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy transduction optical sensor in skeletal myosin.
    Burghardt TP; Park S; Dong WJ; Xing J; Cheung HC; Ajtai K
    Biochemistry; 2003 May; 42(19):5877-84. PubMed ID: 12741846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.