BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9591689)

  • 21. Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature.
    Hand SC; Somero GN
    J Biol Chem; 1982 Jan; 257(2):734-41. PubMed ID: 6459323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of osmolytes on inactivation and aggregation of muscle glycogen phosphorylase b by guanidine hydrochloride. Stimulation of protein aggregation under crowding conditions.
    Eronina TB; Chebotareva NA; Kurganov BI
    Biochemistry (Mosc); 2005 Sep; 70(9):1020-6. PubMed ID: 16266274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes.
    Yancey PH; Somero GN
    Biochem J; 1979 Nov; 183(2):317-23. PubMed ID: 534499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perturbation of folding and reassociation of lactate dehydrogenase by proline and trimethylamine oxide.
    Chilson OP; Chilson AE
    Eur J Biochem; 2003 Dec; 270(24):4823-34. PubMed ID: 14653809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm.
    Wang A; Bolen DW
    Biophys J; 1996 Oct; 71(4):2117-22. PubMed ID: 8889186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen exchange kinetics of RNase A and the urea:TMAO paradigm.
    Qu Y; Bolen DW
    Biochemistry; 2003 May; 42(19):5837-49. PubMed ID: 12741842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of osmolytes on hexokinase kinetics combined with macromolecular crowding: test of the osmolyte compatibility hypothesis towards crowded systems.
    Olsen SN; Ramløv H; Westh P
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):339-45. PubMed ID: 17581767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of ammonium chloride and urea on the activity of lactate dehydrogenase. A general model of catalysis].
    Smovzh SA
    Ukr Biokhim Zh (1978); 1998; 70(1):38-44. PubMed ID: 9848137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of urea and heating on lactate dehydrogenase and glucose-6-phosphate dehydrogenase activity].
    Stabrovskaia VI; Braun AD
    Biofizika; 1982; 27(3):371-4. PubMed ID: 7093315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmolyte effects on helix formation in peptides and the stability of coiled-coils.
    Celinski SA; Scholtz JM
    Protein Sci; 2002 Aug; 11(8):2048-51. PubMed ID: 12142459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trimethylamine N-oxide stabilizes RNA tertiary structure and attenuates the denaturating effects of urea.
    Gluick TC; Yadav S
    J Am Chem Soc; 2003 Apr; 125(15):4418-9. PubMed ID: 12683801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characteristics of lactate dehydrogenase isoenzymes of loach differentiated tissues and eggs].
    Stoĭka RS; Kusen' SI; Kushniruk AV
    Biokhimiia; 1978 Dec; 43(12):2137-42. PubMed ID: 743508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs.
    Fuery CJ; Attwood PV; Withers PC; Yancey PH; Baldwin J; Guppy M
    Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):143-50. PubMed ID: 9180022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts.
    Yancey PH; Fyfe-Johnson AL; Kelly RH; Walker VP; Auñón MT
    J Exp Zool; 2001 Feb; 289(3):172-6. PubMed ID: 11170013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization.
    Al-Ayoubi SR; Schummel PH; Cisse A; Seydel T; Peters J; Winter R
    Phys Chem Chem Phys; 2019 Jun; 21(24):12806-12817. PubMed ID: 31165827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why is glycine not a part of the osmoticum in the urea-rich cells?
    Khan S; Bano Z; Singh LR; Hassan MI; Islam A; Ahmad F
    Protein Pept Lett; 2013 Jan; 20(1):61-70. PubMed ID: 22670764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution.
    Meersman F; Bowron D; Soper AK; Koch MH
    Phys Chem Chem Phys; 2011 Aug; 13(30):13765-71. PubMed ID: 21720648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osmolyte-induced folding enhances tryptic enzyme activity.
    Kumar R; Serrette JM; Thompson EB
    Arch Biochem Biophys; 2005 Apr; 436(1):78-82. PubMed ID: 15752711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.