These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9591697)

  • 1. Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers.
    Xu J; Schwarz WH; Käs JA; Stossel TP; Janmey PA; Pollard TD
    Biophys J; 1998 May; 74(5):2731-40. PubMed ID: 9591697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of filament shortening on the mechanical properties of gel-filtered actin.
    Zaner KS; Hartwig JH
    J Biol Chem; 1988 Apr; 263(10):4532-6. PubMed ID: 3350801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of actin from cardiac muscle.
    Zot HG; Potter JD
    Prep Biochem; 1981; 11(4):381-95. PubMed ID: 7312832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes in actin induced by its interaction with gelsolin.
    Khaitlina S; Hinssen H
    Biophys J; 1997 Aug; 73(2):929-37. PubMed ID: 9251809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin.
    Newman J; Zaner KS; Schick KL; Gershman LC; Selden LA; Kinosian HJ; Travis JL; Estes JE
    Biophys J; 1993 May; 64(5):1559-66. PubMed ID: 8324191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterion-dependent microrheological properties of F-actin solutions across the isotropic-nematic phase transition.
    He J; Mak M; Liu Y; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011908. PubMed ID: 18763983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network.
    Tang JX; Janmey PA; Stossel TP; Ito T
    Biophys J; 1999 Apr; 76(4):2208-15. PubMed ID: 10096915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerization of G-actin by hydrodynamic shear stresses.
    Borejdo J; Muhlrad A; Leibovich SJ; Oplatka A
    Biochim Biophys Acta; 1981 Jan; 667(1):118-31. PubMed ID: 6783112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical properties of actin gels. Elastic modulus and filament motions.
    Janmey PA; Hvidt S; Käs J; Lerche D; Maggs A; Sackmann E; Schliwa M; Stossel TP
    J Biol Chem; 1994 Dec; 269(51):32503-13. PubMed ID: 7798252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ATP on actin filament stiffness.
    Janmey PA; Hvidt S; Oster GF; Lamb J; Stossel TP; Hartwig JH
    Nature; 1990 Sep; 347(6288):95-9. PubMed ID: 2168523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I.
    Chhabra D; Nosworthy NJ; dos Remedios CG
    Electrophoresis; 2000 Nov; 21(17):3863-9. PubMed ID: 11271505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.
    Nyitrai M; Hild G; Hartvig N; Belágyi J; Somogyi B
    J Biol Chem; 2000 Dec; 275(52):41143-9. PubMed ID: 11005806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal alpha-actin.
    Kim E; Miller CJ; Reisler E
    Biochemistry; 1996 Dec; 35(51):16566-72. PubMed ID: 8987991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.
    Boxer LA; Stossel TP
    J Clin Invest; 1976 Apr; 57(4):964-76. PubMed ID: 133121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet contractile proteins: separation and characterization of the actin and myosin-like components.
    Cove DH; Crawford N
    J Mechanochem Cell Motil; 1975; 3(2):123-33. PubMed ID: 129496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of actin from cultured BHK cells.
    Koffer A; Dickens MJ
    J Muscle Res Cell Motil; 1987 Oct; 8(5):397-406. PubMed ID: 3429641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method.
    Wagner O; Zinke J; Dancker P; Grill W; Bereiter-Hahn J
    Biophys J; 1999 May; 76(5):2784-96. PubMed ID: 10233094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.