BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 9592026)

  • 1. Role of nitric oxide and free radicals in the contractile response to non-preactivated leukocytes.
    Kennedy S; Work L; Ferris P; Miller A; McManus B; Wadsworth RM; Wainwright CL
    Eur J Pharmacol; 1998 Mar; 345(3):269-77. PubMed ID: 9592026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of oxidative stress and nitric oxide in regulation of spontaneous tone in aorta of DOCA-salt hypertensive rats.
    Ghosh M; Wang HD; McNeill JR
    Br J Pharmacol; 2004 Feb; 141(4):562-73. PubMed ID: 14744820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endogenous reactive oxygen derived species and cyclooxygenase mediators in 5-hydroxytryptamine-induced contractions in rat aorta: relationship to nitric oxide.
    Srivastava P; Rajanikanth M; Raghavan SA; Dikshit M
    Pharmacol Res; 2002 May; 45(5):375-82. PubMed ID: 12123625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of endothelial-derived reactive oxygen species and nitric oxide in norepinephrine-induced rat aortic ring contractions.
    Srivastava P; Hegde LG; Patnaik GK; Dikshit M
    Pharmacol Res; 1998 Oct; 38(4):265-74. PubMed ID: 9774489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta.
    Zembowicz A; Hatchett RJ; Jakubowski AM; Gryglewski RJ
    Br J Pharmacol; 1993 Sep; 110(1):151-8. PubMed ID: 7693274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rabbit polymorphonuclear neutrophils elicit endothelium-dependent contraction in vascular smooth muscle.
    Ohlstein EH; Nichols AJ
    Circ Res; 1989 Oct; 65(4):917-24. PubMed ID: 2551532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings.
    Lawson DL; Mehta JL; Nichols WW; Mehta P; Donnelly WH
    J Lab Clin Med; 1990 May; 115(5):541-8. PubMed ID: 2160508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved.
    Rodríguez-Martínez MA; García-Cohen EC; Baena AB; González R; Salaíces M; Marín J
    Br J Pharmacol; 1998 Nov; 125(6):1329-35. PubMed ID: 9863664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats.
    Yang D; Félétou M; Boulanger CM; Wu HF; Levens N; Zhang JN; Vanhoutte PM
    Br J Pharmacol; 2002 May; 136(1):104-10. PubMed ID: 11976274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of contractile activity of endothelin-1 induced by electrical field stimulation-generated free radicals.
    Yasuda N; Kasuya Y; Yamada G; Hama H; Masaki T; Goto K
    Br J Pharmacol; 1994 Sep; 113(1):21-8. PubMed ID: 7812613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,5-Di-t-butyl-1,4-benzohydroquinone induces endothelium-dependent relaxation of rat thoracic aorta.
    Fusi F; Valoti M; Frosini M; Sgaragli GP
    Eur J Pharmacol; 1999 Feb; 366(2-3):181-7. PubMed ID: 10082199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of xanthine oxidase inhibition on endothelium-dependent and nitrergic relaxations.
    Ellis A; Li CG; Rand MJ
    Eur J Pharmacol; 1998 Aug; 356(1):41-7. PubMed ID: 9761422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings.
    Dowell FJ; Hamilton CA; McMurray J; Reid JL
    J Cardiovasc Pharmacol; 1993 Dec; 22(6):792-7. PubMed ID: 7509895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical involvement in endothelium-dependent responses of the rat thoracic aorta in moderate hypoxic conditions.
    Saïag B; Shacoori V; Bodin P; Pape D; Allain H; Burnstock G
    Eur J Pharmacol; 1999 May; 372(1):57-63. PubMed ID: 10374715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species.
    Karasu C
    Eur J Pharmacol; 2000 Mar; 392(3):163-73. PubMed ID: 10762670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the endothelium and nitric oxide on the contractile responses evoked by 5-HT1D receptor agonists in the rabbit isolated saphenous vein.
    Valentin JP; Bonnafous R; John GW
    Br J Pharmacol; 1996 Sep; 119(1):35-42. PubMed ID: 8872354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals.
    Pieper GM; Langenstroer P; Siebeneich W
    Cardiovasc Res; 1997 Apr; 34(1):145-56. PubMed ID: 9217884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of platelet-mediated relaxation in rat aortic rings exposed to xanthine-xanthine oxidase.
    Yang BC; Khan S; Mehta JL
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2212-9. PubMed ID: 8023984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated human polymorphonuclear leukocytes elicit endothelium-dependent contraction in isolated pig coronary arteries.
    Murohara T; Kugiyama K; Sugiyama S; Ohgushi M; Yasue H
    J Cardiovasc Pharmacol; 1993 May; 21(5):760-6. PubMed ID: 7685446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.